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Abstract

The work is concerned with the mathematical modelling and numerical solu-
tion of inequality problems for two classes of material behaviour: plastic flow
and stress-induced thermoelastic martensitic phase transformations. The as-
sociated initial boundary value problems for these deformation processes with
hysteresis are formulated in the unifying form of a variational inequality of
evolution that encompasses both the conditions of static equilibrium and the
criteria of loading/unloading and those of slackening, or the criteria of phase
transformations. Under appropriate hypotheses, the existence and uniqueness
of solutions to these global formulations are established. Two numerical algo-
rithms are advised and several computer codes are developed. The algorithms
have proved to be effective in determining the solution of complex, practical
boundary value problems. The obtained results of numerical simulation with
the proposed material models revealed interesting properties of viscoelastic-
plastic structural systems, whereas those for the phase transformation process
are unusual, but in good agreement with the results of laboratory observations.

Key words: variational inequalities, linear complementarity problems, finite
element method, direct and iterative (SSORP plus PCG) numerical algorithms
for LCP, viscoelastoplasticity, slackening, martensitic phase transformations,
shape memory alloys.
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Rn

Lin

Sym,
LinLin
ab= aibi
a®b
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PT

PTC
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IBVP

VI

LCP

SSORP
PCG

set of (n copies of) real numbers;

set of all second-order tensors;

set of all symmetric second-order tensors;

set of all fourth-order tensors;

scalar product of vectors a,b € R";

tensor product of vectors a,b € R%, (a ® b);; = a;by;
scalar product of 2nd order tensors A, B;

tensor of elastic moduli, C = A[B], B, C € Lin;
Euclidean norm of vector a and tensor A;

stresses, strains, and Young’s modulus (Section 4.1)
tensors of (Cauchy) stresses and (small) strains;
transformation strain tensor (domain) of i-th phase;
vectors of generalized stresses and strains (Section 3.2);
generic name for a functional (Section 2) ;

force in a bar (Section 4.1);

yield functions or phase transformation functions;
threshold functions of plastic flow or phase transformation;
thermodynamic driving forces for phase transformations;
volume fraction of martensite or i-th phase (variant);
Helmholz free energy function of i-th phase;

Helmholz free energy function of mixture of phases;
space of vector-valued p'"-integrable functions;

Sobolev space of functions whose derivates of order |j| < m
are in LP(Q2; R™);

Hilbert space, H™(2; R") = W™2(Q; R™);

finite increment operator;

gradient operator;

Phase Transformation(s);

Phase Transformation Criterion(ia);

Shape Memory Alloy(s);

Initial Boundary Value Problem(s);

Variational Inequality (ies);

Linear Complementarity Problem(s);

Symmetric Successive Overrelaxation method with Projection;

Preconditioned Conjugate Gradient method.



1 Introduction

1.1 Motivation

THERE IS A WEALTH of phenomena and problems in science, technology and
economy which are governed by laws expressed not exclusively in the form
of equalities but inequalities (or differential inclusions) as well. The primary
source of the inequality constraints are the laws of generally understood equi-
librium, both of the physical and economic nature. The variational inequality
and complementarity approach is not only a natural and mathematically uni-
fied description of such problems but it also constitutes the very useful basis
for their numerical treatment.

In mathematical terms, the problems considered in this work are finally
formulated in a weak form as the variational inequality:

Find a solution u € K such that
(P(u), v—u) >0 for all v € K. (1.1)

The symbol (-, -) stands for duality pairing between a space V and its dual
space V*, ie. (-, +): V*xV — R, with R denoting the reals. Further, K is a
set of constraints imposed on the solution u. Usually, K C V is a convex subset
in a linear normed space V, on which the operator P : V — V* is defined. In
the problems to be presented in the sequel, ¥V and K are Cartesian products
of some sets dictated by the variables involved in the underling process. It is
worth noting that the processes under consideration are not monotone due to
their history dependence and hysteretic effects.

The physical context of this work is the modelling of complex deformation
processes in solid materials. We concentrate here upon two types of material
behaviour: plastic flow and stress-induced martensitic phase transformations.
Plastic flow is a characteristic of crystalline materials, mainly steels, however
the concept of plastic flow is also useful in the mechanics of rocks, concrete
and soils. Martensitic transformations are diffusionless solid-state changes oc-
curring in metals, ceramics and polymers. It is now generally recognized that
the shape memory effect, a unique property of certain alloys to regain after
deformation their original shape by heating, is associated with a thermoelastic
martensitic transformation. The alloys showing this property are called shape
memory alloys, and the interesting point is that they manifest also another
unique material behaviour called pseudoelasticity and, after a thermomechan-
ical training, the two-way shape memory effect. Pseudoelasticity, which is of
our concern in this work, is now understood as a mechanical kind of shape
memory where the applied external stress is the agent to induce a reversible
martensitic transformation.
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In general, the mechanical response of a material element is quite a com-
plicated issue which depends on many factors, including the micro-structure
and chemical composition of the material, its initial state often characterized
by impurities, defects and pre-deformation, and a thermomechanical loading
program to which the material element will be subjected. As a result, a lot of
mechanical and mathematical models were proposed and are still developing
which are a compromise between the experimentally revealed complexity of
the phenomena and the practical utility of the models. It is trite to remark
that the criteria what is ”purely theoretic” as opposite to ”applicable” in engi-
neering practice are not definitely set, as they are in fact the product of mutual
interaction between the current achievements of science, demands of industry
on new materials and mankind’s desire to get a better understanding of the
laws of physics (nature). Both martensitic transformations and plastic flow
are deformation processes that take place on a microscopic (grain size) scale.
Although they differ drastically in some respects, they have a lot in common.
The significance of this observation is that the process of martensitic phase
transformations and that of plastic flow have a similar mathematical structure
which can be expressed in the form (1.1). Hence, our analysis of martensitic
phase transformations is in many aspects parallel to the theory of plasticity.
Moreover, as an extension of the classical theory of plasticity, we also consider
deformation processes which exhibit plastic flow, viscous effects and unilateral
contact conditions (locking). We have succeeded to frame all these phenomena
in the unifying form of (1.1).

This work thus straddles the territory between mechanics of solids and
applied and computational mathematics. We have taken the vantagepoint
that although the deformation process considered involves rearrangements at
a fine microscopic scale, the quantity of most practical interest is the resul-
tant macroscopic material behaviour. So, our principle goal is to arrive at
macroscopic (phenomenological) models of material behaviour which could
be effectively applied for solving boundary value problems of engineering im-
portance. To achieve this we have adapted some results of homogenization
procedures and of the thermodynamics of irreversible processes. The present
work is based on the author’s research that he has done during the last years
into the problems of plasticity, unilateral contact and phase transformations
[45, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 168].

1.2 Brief review of the literature

The subject matter of this work is a cross-point of several different disciplines,
including metallurgy, crystallography, continuum mechanics and mathematics.
Although the general objective is the same, each of the sciences concentrates
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on characteristic but specialized aspects of the problem, using own language
and methodology. Due to the different languages used and the assumptions
taken the 'transformation’ of achievements from one research field to another
is not easy. As the bulk of related literature is too large to be reviewed here,
let us mention only some (available) of the representative works in the fields
and the accounts that directly motivated our considerations.

Theory of plasticity is now a well-established science whose methods and
predictions are instrumental in manufacturing processes and the designing
of engineering structures, as demonstrated in many monographs, for exam-
ple: HiLL [56], OLszZAK, PERZYNA & SAwcCzUK [135], KACHANOV [67],
7YCzKOWSKI [198], LUBLINER [103]. The rate-independent plastic behaviour
is a classical, conventional idealization which leads to acceptable estimations
for the real response of a wide class of materials working at certain ranges
of thermomechanical loadings. Viscous effects appear to be important for
metals working at elevated temperatures or soil-like and rock-like materi-
als. In such cases the material behaviour is described by models of greater
complexity, accounting for both permanent and temporal (and temperature)
properties in the framework of viscoelasticity and plasticity, or some combina-
tions thereof (viscoelasto-plasticity, elasto-viscoplasticity or unified modells):
PERZYNA [142], NAGHDI & MURCH [124], PONTER & LECKIE [145], RICE
[155], MROZ & RANIECKI [119].

Although the understanding of physics of plastic deformation and the me-
chanical models of plastic flow have achieved already a high level of maturity,
the corresponding boundary value problems are still a challenge facing today’s
applied and computational mathematics. The crucial question of uniqueness
of a solution to the rate-boundary value problem in plasticity was studied by
HiLL who in a series of papers, see e.g. [57], derived uniqueness criteria for a
general elastoplastic continuum, starting from the potential expressed in rates
of stress or strain. DRUCKER, e.g. [26], has formulated the fundamental pos-
tulate, extended later to the work condition by ILYUSHIN [62]. KOITER [76]
has initiated the uniqueness analysis of non-smooth multi-surface plasticity,
further studied by MANDEL [106] and others. The important results in non-
associated plasticity in the context of small deformations were obtained by
MROz, see e.g. [118], and then for dry contact friction by MICHALOWSKI &
MROZ [111]. TELEGA [181] derived variational settings for a number of mod-
els of non-associated plasticity, applying the method of adjoint operator. The
sufficient conditions of uniqueness for the rate problem of non-associated plas-
tic flow have been established by RANIECKI [147] and RANIECKI & BRUHNS
[149], who introduced the well-known concept of a linear comparison solid.

A powerful mathematical tool in the treatment of boundary value problems
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in mechanics (plasticity, unilateral contact and friction) are the methods of
convex analysis and variational inequalities. MOREAU [116, 117] has provided
the unified formulation and qualitative analysis for non-differentiable problems
in plasticity. DUVAUT & LIONS [27] have studied a variety of problems using
regularization techniques and variational inequalities. Modern methods have
been also applied by NECAS & HLAVACEK [128]. Further existence results for
plasticity problems were obtained by JOHNSON [66], MATTHIES [109], SUQUET
[174], JIANG [65], TEMAM [183], and REDDY [153]. HALPHEN & NGUYEN [52]
have introduced a wide class of dissipative materials, later extended to the case
of non-convex potentials by KiMm & ODEN [71], and in terms of hemivariational
inequalities due to NANIEWICZ & PANAGIOTOPOULOS [126]. A general theory
of constraints in mechanics has been studied by W0OZNIAK [192]. The present
writer contributed to the variational inequality setting of plasticity problems
presented in the joint papers with STEIN [89] and WHITEMAN [90].

As is well-known the strain problem for (elastic-) perfect plastic bodies is
more difficult than the corresponding stress problem due to the drastically dif-
ferent regularity of their solutions. The reason is that the plastic strains should
be rather described by (bounded) measures. Thus an appropriate mathemati-
cal setting of the strain problem of perfect plasticity is the non-reflexive space
of bounded deformations BD(S2), cf. [172, 174]. This class of measures allows
for the possibility of discontinuous displacement fields inside the bulk material
where the strains accumulate in thin bands (the localization phenomenon),
treated as surfaces (lines, hinges) of jump discontinuities [175, 143]. Usu-
ally the localization problem is regularized by applying higher order theories
[120, 170, 14], or by the viscoplastic regularization model of Perzyna, a recent
application of which is presented by LODYGOWSKI & PERZYNA [102]. An-
other issue which deserves mentioning here is shakedown analysis as discussed
e.g. in STEIN, ZHANG & MAHNKEN [169].

The distinctive feature of plastic flow are the loading/unloading conditions
that take the form of the following complementarity relations:

—-F>0 A>0 F-A=0 (1.2)

where \ = )\(a:, t) is the so-called plastic multiplier, a scalar function of posi-
tion  and (process) time ¢. The scalar function F = F()) represents the so-
called yield condition which additionally depends, of course, upon some state
and internal (hidden) variables of the deformation process. In optimization
theory, (1.2) are also known as the Karush-Kuhn-Tucker (KKT) conditions.
In the particular case where F is an affine function of A, conditions (1.2) are
called a linear complementarity problem. In this work we make use of the ob-
servation, which is critical in our approach, that conditions (1.2) are equivalent

to a variational inequality of type (1.1).
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Numerical methods for plasticity problems are based mainly on the spa-
tial finite element approximation, of which the comprehensive expositions are
ZIENKIEWICZ & TAYLOR [196], KLEIBER [73], SIMO & HUGHES [162]. In the
theory of plastic flow the main difficulty is because of the different constitu-
tive relations in the elastic and plastic domains, wherein the division into the
two regions is not known a priori but constitutes the additional unknown of
the problem, being governed by the loading/unloading conditions (1.2). Due
to this property one speaks about the catching-up or sweeping process, the
notion coined by MOREAU [117]. When looked at from the other side, or in
terms of an iterative numerical algorithm, the requirement (1.2); amounts to
the projection of the current (trial, exterior to F') state of material point onto
the yield surface F. A numerical scheme based on the Moreau formulation has
been discussed by NGUYEN [129]. This is also the underlying idea of the return
mapping and closest-point projection algorithms. ORTIZ & Poprov [138] have
discussed generalized integration schemes that include the radial return and
midpoint rules. Accounting for the properties of numerical projection step in
the equilibrium step leads to the modified elastoplastic tangent operator, the
so-called consistent algorithmic moduli, that helps in improving the rate of
convergence, as shown in SIMO & TAYLOR [163]. While being initially devel-
oped in the format of Js flow theory, the projection techniques were extended
to large deformation regimes and coupled problems [162, 193, 112].

Numerical methods of structural plasticity may be regarded as the pre-
cursor of the continuum mechanics ones, where the numerical implementation
of the abstract notions of convex analysis and variational inequalities is more
transparent. MAIER in a series of papers, see e.g. [104, 105, 48] have imple-
mented mathematical programming methods in solving of practical problems.
A comprehensive exposition of this approach is BORKOWSKI [13]. The con-
cept of piecewise linearization has been used by GAWECKI who developed the
theory of elastic-plastic slackened systems [41, 42, 43]. The concept of locking
materials was introduced by PRAGER [146]. CORRADI & MAIER [22] have
considered the case of elastic-locking structures. A mathematical study of
locking materials is given by DEMENGEL & SUQUET [24]. The point here is
that the locking conditions have the form of (1.2), with F' representing now
the locking (or clearance) function. The present author’s contribution to such
problems of structural mechanics is contained in the papers [45, 46, 81].

Passing to the second type of material behaviour, by way of motivation
we wish to remark that the shape memory alloys have become recently the
subject of very intensive research for they represent a new class of materials,
the so-called smart materials. Although discovered about half a century ago,
the shape memory effects still remain a mystery in many respects. A compre-
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hensive picture of the related metallurgical aspects and diverse applications
of shape memory alloys can be found in [12, 36, 131, 134, 141, 148, 171].
Shape-memory alloys are applied in adaptive structures as devices for control
of stiffness and damping (electrical connectors, sensors and actuators) and in
medicine as various medical tools, to mention a few.

Martensitic transformations can be defined as shear-dominant, diffusionless
first-order transformations occurring by nucleation and growth. A martensitic
transformation proceeds by a displacive process in which atoms are rearranged
by cooperative movements into a new more stable crystal structure, without
changing the chemical properties of the matrix. As a result the product phase,
conventionally called martensite, inherits the composition and atomic order of
the parent phase, conventionally called austenite. It is crystallographically
instructive to decompose the transformation from austenite to martensite in
two parts: the Bain strain and the lattice-invariant shear. The Bain strain
encompasses all the atomic movements needed to produce the new structure
from the old. The lattice-invariant shear is an accommodation step in which
the new structure and the surrounding material must be changed to fit with
each other. There are two mechanisms of accommodation: slip which is a
permanent change, and twinning, which can accommodate shape changes in a
reversible way. Thus, on the contrary to plastic flow, the characteristic feature
of a thermoelastic martensitic transformation is its crystallographic reversibil-
ity which is the result of the essentially elastic accommodation of martensite
domains, with the coherent interface capable of backwards movement. Yet,
during a nonthermoelastic phase transformation the austenite and martensite
may be somewhat damaged by accompanying plastic deformation, which in-
hibits then the complete crystallographic reversibility of this transformation;
the phenomenon known as transformation induced plasticity (TRIP). Also
in the case of stress-induced martensite if a critical stress is reached, per-
manent deformations appear that tend to restrict the reversal process upon
removing stresses and result in an incomplete shape memory. The important
experimental and modelling results on plastic effects under the phase trans-
formation process are presented in OLSON & COHEN [133], LEBLOND, DE-
VAUX & DEVAUX [92, 91], PATOR, EBERHARD & BERVEILLER [140], LEVITAS
[97], SPIELFELD & HORNBOGEN [166], and FISCHER [35]. However, it should
be mentioned that the mutual interaction of martensitic transformations and
plastic flow is still not totally understood and awaits further investigations.
Another characteristic of a martensitic transformation is that applied stresses
help the transformation; PATEL & COHEN [139] have stated: ”The transfor-
mation is aided by shear stresses, but may be aided or opposed by the normal
stress component depending on whether the latter is tensile or compressive”.
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Finally, on the side of common features, we observe that both plastic flow and
martensitic transformations are controlled by some resistance phenomena of
the dry friction type, in a manner that does not depend on the scale of time
under idealized isothermal and quasi-static conditions.

The sketched above characteristics of martensitic transformations result
in the unusual hysteretic behaviour observed in the force-displacement space
as revealed in many laboratory tests, e.g. SCHROEDER & WAYMAN [159] and
Huo & I. MULLER [59], cf. Fig. 6, and ICHINOSE, FUNATSU & OTSUKA
[61], see Fig. 27. There have been devised a number of constitutive models
for thermoelastic martensitic phase transformations derived on a microme-
chanical or phenomenological basis; some of them will be outlined. FALK
has developed a model based on the Ginzburg-Landau theory in a number
of papers, cf. e.g. [33]. Using the concepts of statistical mechanics and that
of irreversible thermodynamics, I. MULLER and his co-workers have devel-
oped in a series of papers a model which describes their experimental findings,
for reviews see [122, 59], and the discussion of WILMANSKI [190]. Miiller’s
model was extended to the 3D case by RANIECKI et al. [151, 150], who in-
troduced two types of models: the so-called R-model that is based on the
notion of Maxwell’s stress and excludes energy dissipation, and the Ry -model
which accounts for dissipation effects. In order to account for the hysteresis
loops displayed in [59], BRANDON & ROGERS [16] have employed a switch-
ing function that differentiates between the ’elastic and plastic modes’. The
response of Miiller’'s model was examined by the present author and MIELKE
[84, 85] who observed a fundamental difference between the local and global
behaviour in a non-homogeneous case. FREMOND has considered the austen-
ite/martensite mixture as a three-phase system and posed his model in the
framework of convex analysis, for a summary account see [38]. In deriving
the averaged constitutive relations BERVEILLER et al. [8, 140] have used a
self-consistent procedure for the micro-macro transition. LEVITAS [96, 97] and
LEVITAS & STEIN [99, 98] have approached the phase transformation pro-
cess by making use of the postulate of realizability. FISCHER et al. [36] have
discussed the phase transformation conditions useful on the level of contin-
uum mechanics description. Accounting for both phase transformation and
reorientation (detwinning) effects of martensite variants is demonstrated by
SUN & HWANG [173]. A detailed discussion of two and multiphase systems is
provided by BoyD & LAGOUDAS [15]. Interesting results in numerical simu-
lations of phase transformations are presented by MARKETZ & FISCHER [107]
and LEVITAS, IDESMAN & STEIN [95].

Thermoelastic martensitic phase transformations are a result of the ex-
change of stability that is manifested by discontinuous changes in the crystal
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lattice of the high temperature phase (austenite), which possesses a greater
symmetry, and that of the low temperature phase (martensite), which may
exist in many variants. The new crystal structure replaces the parent mate-
rial in the area where phase transformation has taken place. In terms of the
free energy function this amounts to a potential with multiple local minima
(energy wells). Analysis of the so-called non-elliptic elastic solids appears to
be initiated by KNOWLES and co-authors, in particular KNOWLES AND ABE-
YARATNE [2] have shown that in quasi-static, maximally dissipative motions
their response coincides with that of a rate-independent elastic-perfectly plas-
tic solid. The seminal contribution for such materials is due to ERICKSEN [31],
see also [32]. JAMES [64] has established the necessary and sufficient conditions
that some piecewise homogeneous deformations in phase transformations are
stable under dead loads. BALL & JAMES [6, 7] have shown that the failure
of semicontinuity of the free energy functionals in non-elliptic materials is the
reason for fineness of microstructures observed in martensitic transformations.
The illuminating analyses of microstructure by Ball and James and many oth-
ers, e.g. CHIPOT & KINDERLEHRER [19], FONSECA & S. MULLER [37], reveal
that the precise modelling of that complex material behaviour must accounts
for very fine properties of underlying functions, what requires some deep math-
ematical concepts (e.g. Y-measure, H-measure) even though the mathematical
models are designed for idealized situations at the time.

With more inclination towards the metallurgical literature, KOHN has ex-
ploited the techniques of homogenization, see paper [74] and its extended
version [75], to mathematically substantiate and generalize the results of aver-
aging procedures commonly used in continuum mechanics (KHACHATURYAN
[69] and others). In deriving the model, he assigns each phase (variant) of the
austenite/martensite mixture a quadratic free energy function. The weighting
coefficients in the resulting expression for the effective energy of the multi-
phase system correspond to volume fractions of the phases, playing the role
of internal variables in continuum mechanics. For a two-component case, us-
ing another method PIPKIN [144] obtained a result similar to Kohn’s. With
a piecewise quadratic approximation of the strain energy function, otherwise
it is difficult to explicitly compute that function in the large strain range,
FRIED & GURTIN [39] have analyzed the equilibrium problem of multi-phase
systems. MIELKE et al. [114] have investigated the time-dependent process
of phase transformation using an extremum principle. The present author
et al. [84, 86, 80] have developed a variational inequality formulation for the
martensitic deformation process that accounts for hysteretic effects and leads
to useful numerical algorithms for associated initial boundary value problems.

Closing this section, we wish to underline the crucial role that is played in
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the dissipative deformation processes by thermodynamics, although there are
some reservations among the researches as for the form(s) of the Second Prin-
ciple of Thermodynamics, as evidenced in a number of the above cited works
and the following: TRUESDELL [184], COLEMAN & GURTIN [21], I. MULLER
[121], KESTIN & RICE [68], EDELEN [29], HUTTER [60], GERMAIN, NGUYEN
& SUQUET [47], MuscHIK [123], WOLLANTS, R0o0s & DELAEY [191] and
others. The Clausius-Duhem inequality imposes restrictions on constitutive
relations and a restriction on motions, the latter pertains to the direction in
which the process occurs in nature. The significant fact is that this inequality
may be treated as a criterion of stability (entropy rate admissibility), which
helps one to single out a single solution.

1.3 Aims, scope and main assumptions

This work focuses on the analysis of equilibrium problems for solids which
are subject to unilateral constraints. The source of such constraints are the
constitutive laws of materials — plasticity, locking and phase transformations
— which are expressed in the form of complementarity conditions. In the pre-
vious section we have looked at the problems in wide perspective, by recalling
the instances where these conditions operate. In order to bring the central idea
of our approach into sharp focus, we have adopted some assumptions, with
emphasis being placed on the structure and practical usefulness of the models.
For simplicity and without loss of generality for our purposes, infinitesimal de-
formations and initially homogeneous materials are assumed. Slow isothermal
deformation processes are considered and inertial effects are neglected. Only
in Section 4.1.4 a strain-temperature coupling due to the latent heat of trans-
formation is taken into account. We are concerned with coherent martensitic
transformations, that is the displacement vector in a body is continuous and its
gradient can be piecewise continuous. Although we make use of geometrically
linear theories, the underlying problems are nonlinear due to their intrinsic
complexity. In the majority of the aforementioned works the authors are con-
cerned with stable configurations of shape memory materials. Our interest is
in the process of evolution, so we account for the dissipation effects, eventu-
ally tracing the process as a sequence of equilibrium states (discrete-in-time
problem). The approach we use is based on the theory of elliptic operator
equations which for the free-boundary problems studied in this work take the
form of variational inequalities. Here the free boundary is a boundary between
the elastic and the plastic region, or it is the front of a forward and reverse
martensitic phase transformation or, in the case of locking, it is the boundary
of a contact area.

In brief terms, we have tried to investigate the deformation process of a
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solid body by resolving the four interacting tasks:

e to derive a mathematical formulation (model) of the process,

e to establish the conditions of existence and uniqueness of a solution to
the associated initial boundary value problem,

e to develop robust numerical algorithms and computer programs based
directly on the proposed mathematical model, and

e to compare the model predictions with published experimental results.

In the case of plastic behaviour we are concerned with materials that ex-
hibit positive (isotropic) hardening, which allows us to set the related varia-
tional boundary value problem in the framework of Sobolev spaces. In Sec-
tion 3.2 we have relaxed this assumption by permitting the case of localized
(lumped) plastic hinges in the mechanism of perfect plastic flow, which corre-
sponds to Dirac delta shape functions in the sense of finite element method.
We have made some efforts to complete the proposed variational inequality
formulations by an analysis on existence and uniqueness. Clearly, existence
theorems allow one to prove, independently of any physical and experimental
evidence, the consistency of the constitutive assumptions and, in particular,
the wellposedness of the corresponding initial boundary value problem (IBVP).
The issue of regularity of a weak solution is behind the scope of this work.
We merely remark that no matter how smooth the data, the solution of the
variational inequality problem cannot be ”"too regular”, i.e. even under very
strong regularity assumption on the data, the existence of a smooth solution
cannot be expected in general.

Of great practical importance is the computational algorithm implied by
a mathematical formulation of IBVP. The mechanical problems considered
in this work are finally solved as a sequence of certain forms of the linear
complementarity problem (LCP). Specifically, for the numerical solution of the
IBVP we elaborated numerical algorithms suitable for our LCP and written a
number of computer codes that are based essentially on the following items:

e an implicit one-step time integration scheme,
e the finite element method,
e two methods for the LCP: (i) a direct elimination algorithm using the

idea of pivoting, and (ii) a two-step iterative algorithm.

Let us remark in passing here that the developed numerical LCP-
algorithms are quite general and may be used for solving similar problems
in economy, game theory, traffic planning, etc.
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The layout of the presentation is as follows. In the next chapter we recall
some definitions and theorems related to the complementarity problem and
variational inequalities. In particular, the equivalence lemma of the comple-
mentarity and variational inequality problems is proved, and the the funda-
mental existence and uniqueness theorem in the theory of variational inequali-
ties is recorded. Computational aspects of solving the linear complementarity
problems resulting from our material models are also discussed. Chapter 3
is devoted to plasticity problems. First we consider rather in detail a model
problem of plastic flow. We formulate the corresponding IBVP of the dis-
placement driven process as a variational inequality, and for its incremental
version we prove the existence of a unique solution. Next, a new mathemati-
cal model for the slackened-viscoelastic-plastic response of skeletal structural
systems is presented. Here also the question of existence and uniqueness is
addressed. We include the results of some numerical experiments for typi-
cal engineering test problems. In Chapter 4 we deal with the other type of
material behaviour — martensitic phase transformations. The characteristic
features of the PT deformation process are investigated first by means of a
one-dimensional model describing a series of laboratory tests on SMA wires.
Subsequently this two-phase 1D model is generalized to the 3D case and de-
fined in the variational inequality format. This allows us to prove existence
and uniqueness, following actually the lines of reasoning in the model problem
of plastic flow. By a next extension of this model we arrive at a multi-well
problem, for which we again establish the existence and uniqueness result.
We are aware that there is some repetition in the proofs of the uniqueness
theorems, but they are given for each problem considered for the sake of self-
containness and clarity of the different mechanical problems, although many
intermediate steps are skipped. The included numerical results of the uniaxial
tension test on two-phase strips illustrate the intriguing properties of marten-
sitic phase transformations. The obtained results and gained observations not
explicitly commented in the course of derivations are summarized in the last
chapter, where also certain directions for further work are indicated.

Throughout this work we adopt the natural assumption that the initial
state of the material is regular, i.e., the data needed satisfy all the relations
defining the associated IBVP.

Finally, a word about the notation used. We have tried to find a compro-
mise between the symbols traditionally used in mechanics and mathematics,
the solution of which is, unfortunately, not unique as the Notation shows.
Roughly, GURTIN [51] is used as a guide in mechanical aspects and ODEN
[132] in the mathematical ones. The end of some logical items (definition,
theorem, remark) is marked by the symbol O .



2 The minimization problem and variational
inequalities

In this section we wish to present some mathematical preliminaries to be used
in the next sections devoted to the mechanical problem. These are concepts
of optimization theory and functional analysis which may be found in many
sources, our favorite general references are COTTLE et al. [23], GLOWINSKI et
al. [49], EKELAND & TEMAN [30], ODEN [132], ROCKAFELLAR [157] and ZEI-
DLER [195]. Such a mathematical framework was used by the present author
in [79], in the context of unilateral contact problems. First we motivate vari-
ational inequalities from the standpoint of optimization theory, and introduce
standard mathematical notations. Then the equivalence lemma between the
variational inequality and the complementarity problem is established. Fi-
nally two numerical algorithms for the linear complementarity problem are
discussed.

2.1 Statement of the problem

Formally, the minimization problem can be formulated as follows: Among all
the functions satisfying some prescribed conditions, as defined via a set KC,
find the function(s) which minimizes a given functional F' : £ — R,

Find w € £ such that F(u) = ;glfCF(v) (2.1)
The constraint set X C V is a subset of a space of functions V in which
the problem can ‘reasonably’ be posed; usually, a reflexive Banach space. Of
course, the question of existence and uniqueness of solution(s) to (2.1) depend
upon both the properties of the functional F' and the constraint set K. In order
that the minimization problem be meaningful, F' must be bounded below on
K, ie min{F(u)| ue K} > —oc.

The qualitative analysis of (2.1) is the subject of the direct methods of
the calculus of variations. Their aim is to establish conditions on F' and K
under which the minimization problem possesses one or more solutions and to
characterize them. For simplicity, presume that F' is Gateaux differentiable
and C a closed convex subset of V. Then, a minimizer u of (2.1) is also a
solution of the variational inequality:

Find w € £ such that (DF(u),v—u)>0 foralluek (2.2)

where (-, -) : V* x V — R is duality pairing between the linear space V and
its dual V*. If furthermore F' is convex, then the problems (2.1) and (2.2) are
equivalent. Actually, (2.2) is a weak form of the Euler-Lagrange inequality for
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the problem (2.1), and it reduces to an equality (Euler’s equation) if the set K
is a linear space. The role of variational methods in mechanics is clearly shown
in the review by SZEFER [177], where various expressions for the potential F'
are given. In the analysis of problems (2.1) and (2.2) very fine properties of
the functional F' and the constraints set K must be taken into account.

Due to the constraint I, it is sometimes convenient to reformulate (2.1)
as the following minimization problem defined on the whole set V

F(u) = inf {F(v) + xx(v)} (2:3)
veV
in which F : V — R U {+o0} is an extended real-valued functional and xx is
the indicator function of the set K

0 ifvek
= ’ 2.4
xk(v) {+oo if v ¢ K. 24

Notice that the use of the device (2.4) does not remove the necessity of taking
into account inherent features of the constraint &, because the actual mini-
mizer of F' is still an element in K. We remark here that extended real-valued
functionals are not only the matter of convenience, for they can be also arrived
at from physical grounds, e.g. the case of the strain energy function in finite
elasticity.

In order to introduce the terminology and notation we recall the definitions
of some classes of functions which are an indispensable tool for the study of
(weak) solutions of partial differential equations and problems in the calculus
of variations. With  being a domain in R%, d a positive integer and 1 < p < oo
an extended number, we denote by LP(2) the set of (equivalent classes of)
measurable functions that are p'"-power integrable on Q. The norm on L?(Q)

is given by
1/p
lullLr) = </ |ul? dm) if 1<p<oo,
Q
ullpee() = esssup |u(z)| if p=oo,
xel

wherein the integration is with respect to Lebesgue measure dz.

Let m > 0 be an integer and 1 < p < oo a real number. The Sobolev
space W™P(Q) consists of those functions u € LP(£2) whose all weak partial
derivatives of order |j| < m are also in LP(2), i.e.

WmP(Q) = {u € IP(Q)| Diu € LP(Q), |j| <m }
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where multi-index notation, D7, is used with 5 = (j1,j2,...,Jq) being a d-
tuple of nonnegative integers,

) oldl
i_ 0 .
D _76:5{1...8:52‘1’ gl =g1+J2+ ...+ Ja

The space WP (Q) is equipped with the norm

1/p
[ullwmo@) = / Z |DIufP dz if 1<p<oo,
2jl<m
[[wllyym.ce ) max H U ey if p=o0

The Sobolev space W™P(Q) is a Banach space, which is reflexive if 1 < p <
co. In the particular case of p = 2, W™2(Q) is a Hilbert space H™(Q) =
W™2(2). Denoting by Wy " () the closure (in the norm of W™?(Q)) of
infinitely differentiable functions with compact support, C§°(€2), we obtain in
particular a Hilbert space HJ*(2) = W," (). For the vector-valued functions
u = (up,ug,...,uq) with u; € LP(Q) or u; € H™(Q) (1 = 1,2,...,d) we
will use the notation LP(€Q;R%) and H™(;RY), respectively. The space of
functions with bounded deformation BD(2), which is a proper function space
for problems of perfect plasticity, is defined by

BD(Q) = {ue L' RY | By e M'(9), 1<4,j<d}

where E;; = (u;; 4+ u;;)/2 are components of the tensor of small strains, E,
and M'(Q) is the space of bounded measures on €.

Finally, it should be mentioned that the indicated connection of minimiza-
tion problems and variational inequalities is not the only source of the latter,
they can also arise independently as a direct description in weak form of real
phenomena.

2.2 Variational inequalities and complementarity problems

We begin with a variational inequality associated to a bilinear form a defined
on V, a real Hilbert space endowed with norm ||-||,,.

Definition 2.1. Let a : V X V — R be a bilinear form on V. It is said that:
i) a is continuous on V if there is a positive constant C such that

la(u, v)] < C ully, ||v]ly, for all w,v € V;
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ii) a is coercive on V if there is a positive constant « such that
a(v, v) >« ||1)H$) for all v eV,
iii) a is symmetric on V if
a(u, v) = a(v, u) for all w,v e V.
0

Let [ be an element of the dual space V*, i.e. [ € V*, and K a convex set
in V. Consider the following problem (variational inequality):

Find u € K such that
a(u, v —u) > {l,v—u) for all v e K. (2.5)

Formula (2.5) is a generalization of the variational formulation of boundary
value problems for linear elliptic equations. In the special case that L C V is
a subspace of V, (2.5) reduces to a variational equality.

The following theorem is the fundamental result in the theory of variational
inequalities.

Theorem 2.2. Let a(-,-) be a continuous and coercive bilinear form on V,
and let IC C V be a nonempty closed and convex subset. There exists a unique
solution to the problem (2.5). The mapping | — w is Lipschitz continuous

from V* into V.

Proof. See LIONS & STAMPACCHIA [101], KINDERLEHRER & STAMPAC-
CHIA [72]. 0

Observe that a linear and continuous mapping A : ¥V — V* determines a
bilinear form a by the relationship

a(u, v) = (Au, v), (2.6)
and vice verse, given a bilinear form a, the linear transformation
v — a(u, v) forall veV (2.7)

assigns a continuous linear operator A : V — V* that satisfies (2.6).
Letting P : V — V* be a continuous (not necessarily linear) operator, we
can generalize the variational inequality (2.5) as follows.

Find u such that

ue K, (Pu),v—u)>0 for all v e K. (2.8)
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Closely related to (2.8) is the complementarity problem which is posed on
K* x K C V* xV, where K is a nonempty positive closed cone in V and K* is
its dual cone, that is

Kr={weV'| (w,v)>0forallveKL}. (2.9)

Recall that a subset K C V is a cone in V (a convex cone with its vertex
at the origin) iff for any u,v € K the element u + v € K and for any u € K
the element Au € K for all A > 0.

The generalized complementarity problem is defined as follows.

Find u such that
u€e K, Pu)eK*, (P(u),u)=0. (2.10)

The following lemma, used in [79, 89, 90], has proved quite useful in our
modelling of mechanical problems.

Lemma 2.3. The complementarity problem (2.10) and the variational inequal-
ity (2.8), both defined on the same cone K, are equivalent.

Proof. First we show that variational inequality (2.8) implies complemen-
tarity problem (2.10). If K is a convex cone (with vertex at the origin), then
nu € K and u+w € K for any u,w € K, n € [0,00). By setting v = 0 and
v = 2u in (2.8), we obtain respectively

(P(u), —u) >0 and (P(u), u)>0
thus, for u € IC,
(P(u), u) =0.

Next, by taking v = u 4+ w in (2.8), we reduce the latter to
(P(u), w) >0 forall welkK

which means that P(u) € K*.

The inverse implication follows easily from the definition of the dual cone.
Let u € K and P(u) € K*, then by subtracting ( P(u), u) = 0 from the
inequality of (2.9), we arrive at (2.8), which completes the proof. O

The property of monotonicity is instrumental in the question of existence
and uniqueness of a solution to operator equations.
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Definition 2.4. Let P : V — V* be an operator mapping a real reflexive
Banach space V into its dual V*. It is said that:
(i) P is monotone on V iff

(P(u) — P(v), u—v) >0 for all w,v €V,

(ii) P is strictly monotone on V if and only if P is monotone and
(P(u) — P(v), u—v) =0 implies u = v.

(iii) P is strongly monotone on V iff there exists a constant o > 0 such that
(P(u) — P(v), u—v)>alu—v|}  foral uwv€V;
(iv) P is coercive on V iff

e (P, )

lully—oc  |lully

v) P is hemicontinuous at u € V if
h&) = (Plu+&v), w)  £€[0,1]

is a continuous function of ¢ for every v, w € V. O

We also record the definition of stable operators on Banach spaces.

Definition 2.5. Let X and Y be real Banach spaces. The operator P : X — Y
is said to be stable iff

| P(u) — P(v)|ly > a(|lu—2|y) for all wu,v € X,
where « : Ry — Ry is continuous, strongly monotone increasing function
with @(0) = 0 and (&) — oo as £ — oo. 0
The following statement follows directly from the above definitions.
Proposition 2.6. Let P :V — V* be a strongly monotone operator. Then P
is coercive and stable. g
Let us introduce another class of operators.

Definition 2.7. An operator P : V — V* is said to be pseudomonotone iff,
for each u € V and each sequence {u,} in V

Up — U  asS N — 00 and limsup ( P(up), up —u) <0
n—oQ

it follows that
liminf ( P(uy), up —v) > (P(u), u—v) for all veV.

n—oo
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In a sense, pseudomonotone operators generalize the class of monotone
operators.

Proposition 2.8. Let V be a reflerive Banach space and P : YV — V* be
strongly monotone and hemicontinuous. Then P is pseudomonotone. U

The following theorem expresses some general existence result for pseu-
domonotone variational inequalities.

Theorem 2.9. Let V be a separable reflexive Banach space, V* its topological
dual and let KK CV be a nonempty closed convex unbounded subset of V. Let
an operator P : I — V* be bounded and pseudomonotone. Furthermore, let P
be coercive in the following sense: There exists a vo € KC such that

(P), v—wo)

B — +oo as |v[ly, = +oo forall veK.
Ylly

Then there exists at least one solution u € IKC to the variational inequality
(P(u),v—u)>0 forall veK.

Proof. See ODEN [132]. O

In the special case of great practical importance in which P is an affine
mapping, i.e. P(u) = Au + b, where A : V — V* is a linear operator and
b € V*, problem (2.10) is called a linear complementarity problem (LCP),

uek, Au+beK*, (Au+b, u)=0. (2.11)

The numerical treatment of the LCP defined in R" is briefly discussed
next.

2.3 Numerical methods for the LCP

The complementarity problems first appeared in optimization theory and
mathematical programming as the necessary conditions of optimality (Karush-
Kuhn-Tucker conditions), and usually were formulated in the finite dimen-
sional context, i.e. ¥V = R", where R" stands for the Euclidean space of real
ordered n-tuples. In particular, any quadratic programming problem may be
solved as a linear complementarity problem. Restricting our further consider-
ation to the finite dimensional case we let P be now an affine mapping of the
form P(x) = Az +b, where A € R™*" is a square matrix and € R"™, b € R"
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are n-dimensional vectors. Now, the linear complementarity problem (LCP)
is to find the vector £ € R" such that

Y

4 H

Az +b > 0, (2.12)
z-(Az+b) = 0.

By introducing a slack variable y = Az + b we can rewrite the system (2.12)
in the following standard form which is convenient when solving the problem
by a direct method:

Az +y = b,

(2.13)
>0 y>0, x-y=0,

wherein A = —A. When matrix A is symmetric, the problems (2.12) and
(2.13) are called symmetric, otherwise nonsymmetric.

In the problems we consider in Section 3.2 the unknown vector consists of
three subvectors, & = col (21, 2, 3), and the matrix A has the structure,

All A12 A13
A = Agl AQQ A23 (2.14)
ABI A32 A33

where the submatrices Aij € R™*"i with 4,7 = 1,2,3 and n;,n; € N being
a positive integers, cf. (3.90), (3.92). The critical property of those LCP is
that their first unknown component vector i is unrestricted in sign. Ac-
counting for this we arrive at the form of LCP which we call a nested linear
complementarity problem (nLCP):
Az +y = b,
(2.15)
>0, 23>0, vy, =0, y,>0, y3>0, z-y=0.

Another characteristic feature of the systems (3.90), (3.92) is that A is bisym-
metric, i.e. its components satisfy the conditions: A (i = 1,2,3) are sym-

metric, and Aij = —AjTl-, with 4,7 = 1,2,3, ¢ # j. A similar modification is

pertinent to the nLLCP expressed via matrix A, so we have
Az +b > 0,
(2.16)
2 >0, 23>0, x-(Az+b)=0.

The question of existence and uniqueness of a solution to the linear com-
plementarity problem is dealt with in the following theorem proved in COTTLE
et al. [23]. We formulate the theorem in terms of the properties of matrix A.
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Theorem 2.10. (i) Let A € R™™™ be positive definite, then the linear com-
plementarity problem (2.12) and (2.15) has a unique solution for any b € R™.
(ii) Let A € R™™ be positive semi-definite and b € R™. Let ° be a solution
of the linear complementarity problem (2.12) or (2.15). If ° is not degenerate
(i.e. there is no index 0 < i < n that both z and y; are equal to zero) and the
corresponding matriz A° C A (A° is composed of these rows A, and columns
Ay, for which x3, > 0) is nonsingular, then x° is the unique solution of the
problem. O

Finally we want to observe that also the LCP (4.59) in Section 4.2.4 can
be written in the form of (2.15), but now with the LCP-matrix A*
A -1 ) [ 010 ]
A= with I = . (2.17)
TI 0 0 0 I

For solving the inequality problems one has to resort to numerical tech-
niques. There are basically two classes of algorithms for the linear complemen-
tarity problem: direct methods and iterative methods. The direct methods
are based on the process of pivoting on the elements of the underlying matrix.
This amounts, in simple terms, to successive exchanges of a selected basis
variable with its complementary variable. The principle advantage of direct
methods is their robustness and finite character. The latter means that they
terminate after a finite number of computations, determining the solution if
it exists or, providing the answer that no solution to the underlying LCP ex-
ists. On the other hand, the first class of algorithms require large storage
memory, which makes them impractical for large problems (more then three
thousands of unknowns, say). In the context of finite element method, free
from this shortcoming are iterative methods, which are additionally insensi-
tive to round-off-errors. Hence, they are well suited for large scale problems,
but there is the price to pay: to assure their convergence and effectiveness
one has to properly predict some algorithmic parameters, which in the case of
inequality constraints is not straightforward.

We have developed two algorithms. The first algorithm is an enhance-
ment of the direct method elaborated in VAN DE PANNE [185]. The main
steps of the algorithm are presented in KuczMma [81], and we refrain from
discussing it here. The second scheme is an adaptation of the two-step itera-
tive algorithm devised by KOCVARA & ZOWE [77]. Within the first step the
symmetric successive overrelaxation method with projection (SSORP) is used,
while within the second step the preconditioned conjugate gradient method
(PCG) solves the system of equations for the active variables as determined
by the SSORP. In simple terms, this scheme combines the SSORP method
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and the PCG method, with preconditioning by modified incomplete factor-
ization (MIC(0)*). Details of the two-step algorithm are presented in [77],
and will not be recalled here, but two things should be mentioned. First, that
algorithm is designed for the LCP with positive definite matrix, so it cannot
be applied to the problems in Section 3.2. Second, on a part of the vector of
unknowns in our LCP for martensitic phase transformations in Section 4, the
box constraints are imposed, so some modifications of the original version [77]
were needed. Furthermore, our LCP-matrix is generated by two mechanically
different sources: equilibrium conditions and phase transformations rules. We
observe that the convergence rate can further be improved if we have addition-
ally scaled the LCP-matrix A*. The very important issue of the properties
and quality of finite element approximations is not one of our purposes in this
work. However it is worthwhile to mention that in the numerical calculations
we have, on principle, used compatible finite elements with polynomial ba-
sis functions (shape functions) that assure the internal approximation of the
constraint set K.



3 Problems in viscoelastoplasticity

The first part of this chapter concerns a model problem of plastic flow. With
emphasis being laid on the structure, we confine ourselves to a fundamen-
tal case in the theory of plastic low — the Huber-von Mises yield criterion
with isotropic hardening. Following the paper [90]' we present a detailed
derivation of the associated initial boundary value problem (IBVP) for a three
dimensional body in the form of a variational inequality (VI). The results of
numerical experiments for a test problem are provided in [90] and will not be
recalled here. Instead, we strengthen here the previous result by establish-
ing the conditions of existence and uniqueness of solutions to the incremental
boundary value problem.

In the second part we develop a model of slackened-viscoelastic-plastic
media. Although we have formulated the model in the context of skeletal
structural systems, the derived matrix relations are of general importance, in
the sense that they may be regarded as a discrete description of two- or three-
dimensional bodies made from materials with such properties, provided that
due care will be taken in generating the finite dimensional approximations.
Such approximations are rather straightforward in the one-dimensional case
[13]. We cast the matrix relations in the format of a linear complementarity
problem which, of course, by virtue of Lemma 2.3 can be expressed in a VI
form. The qualitative questions for this problem are also addressed, yet, they
are quite delicate in a general case.

To motivate our derivations let us emphasize that the VI approach to prob-
lems of elastoplasticity and locking is most natural since it reflects directly the
intrinsic features of these kinds of material behaviour. Notice the the varia-
tional inequalities (or complementarity problems) derived for the problems in
this chapter need not to be associated with potential operators, cf. Chapter
2 for a discussion on this. In more precise terms, the obtained variational
inequalities are a week form of the loading/unloading conditions, slackening
(locking, unilateral contact) constraints and equilibrium equations. The re-
markable advantage is that the VI description automatically covers both the
case of plastic loading and that of elastic unloading, whereas the boundary be-
tween the plastic and elastic regions is a 'by-product’ of solving the variational
inequality. Analogously for the locking response, in which case we utilize a
locking criterion which is to ’signal’ the presence of resistance of the material.

Some conclusions close the chapter.

!The paper was presented on the Eighth Conference MAFELAP, Uxbridge, 27-30 April
1993.
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3.1 The model problem of plastic flow

In this section we develop the VI formulation for the model problem of plastic-
ity. We consider the quasi-static deformation process of an elastic-plastic body,
modelled according to infinitesimal theory of plastic flow with isotropic hard-
ening. In this case the total infinitesimal strain tensor can be split additively
into an elastic part and a plastic part. Moreover, we restrict our attention
to initially homogeneous and isotropic materials. Let us also remark that for
the Huber-von Mises yield criterion, which is under consideration, the notions
of work-hardening and of strain-hardening are equivalent. We formulate the
problem in strain space, following the idea due to NAGHDI & TRAPP, see
e.g. [125], used also in a VI formulation by HLAVACEK et al. [58]. The pro-
posed variational formulation consists of (a) a variational equation which is
the weak form of the equilibrium conditions, and (b) a variational inequality
that accounts for the irreversibility of the plastic deformation, controlled here
by a rate of plastic multiplier A. The independent variables of the formulation
are the fields of displacements u = u(x, t) and of plastic multiplier A= A(a:, t),
where « is a vector of the space coordinates of a material point and ¢ stands
for time.

We begin with recalling the constitutive relations for the elastic-plastic ma-
terial, and setting the relevant notations. Then, the variational formulation of
the related IBVP is given and a time-step ¢, 1 — ¢, problem is defined. Fi-
nally, under appropriate conditions, the existence and uniqueness of solutions
to the incremental problem is established.

3.1.1 Fundamental constitutive relations

We are concerned with the elastic-plastic, quasi-static deformation process
of a solid body. The body, in its undeformed state, corresponds to an open
bounded domain Q C R? (d < 3) with sufficiently smooth boundary I which
consists of two mutually disjoint parts 'y, and I'y, i. e. T' = I',|JT, and
'y Ty = 0. We will consider the case that the body is supported on a set
I’y with positive measure, i.e. measI', > 0. Let u = (ui(x),...,uq(x)),
T = T(x) and E = E(x) denote the displacement vector, (Cauchy) stress
and (small) strain tensors, respectively, at a material point € Q = Q(JT.

The system of the local equilibrium equations of the body, subjected to a
volumic force vector f, reads

divl'+ f=0 in Q. (3.1)
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Let the following conditions be prescribed on the boundary '
u=0 on I, (3.2)
Tn=t on I, (3.3)

where t and n are the given traction vector and outward unit normal to I'.
Under the assumption of small strain we have

E=E(u) = % [Vu+ (Vu)']. (3.4)

Moreover, for a linear elastic material the constitutive equations take the
form of Hooke’s law
T = A[E], (3.5)

where the elasticity tensor A possesses the usual properties of symmetry
Aijkt = Ajitt = Aijik = Agiij 1<i4,5,k 1 <3,

and A is uniformly pointwise stable with bounded entries [108], that is, there
exist constants k4 > 0 and £/, < oo such that

S-A[S] > ku|S]2,  VSe€Sym

max | Ajglloo < Ky (36)
For a linear isotropic elastic material
A=2uT+EIQ®1I (3.7)
and equation (3.5) simplifies to
T=2uE+¢(trE)I (3.8)

where p and ¢ are Lame’s constants of the material, and 1T and I denote
the unit tensors of fourth and second order, with the components (I);jx =
(6ik(5jl + (5il(5jk)/2 and (I)ij = (51‘]' (Kronecker’s delta).

Confining ourselves to small deformations we may split the total strain
tensor into an elastic E° and a plastic EP part so that

E = E° + EP. (3.9)

In the case under consideration the elastic part of the total strain tensor is
related to the stress tensor by Hooke’s law,

T = A[E — E”| (3.10)
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whereas the plastic part is
¢
EP = EP(t) z/ E’(r) dr (3.11)
0

in which E” is governed by an incremental flow rule.

In the theory of plastic flow it is expedient to use the concept of the yield
function F' depending on the stress T and a family of internal variables x by
which the structural rearrangements in the course of the deformation process
are accounted for,

F=F(T,k),

with F' specifying a region &, in stress space
Ee={(T,k) e Sym x YT | F(T,k) <0}. (3.12)

The interior of £, defined by the strict inequality is called the elastic region,
whilst plastic flow is stipulated to occur only on the yield surface that is the
boundary of &, defined by F = 0.

The appearance of plastic strains renders the analysis of an elastic-plastic
body nonlinear, even under the assumption of linear kinematical relations.
Hence, also in the quasi-static case, the state of the body is a function not
only of place x € Q but also of a time-like parameter ¢ € [0,T], (T < oo),
which we call a process time. The process time records the sequence of events
in the deformation process and thereby hysteresis effects (dissipation).

The flow rule relates the rate of change of plastic strain to the rate of
change of stress, and in the case of associative plasticity it may be assumed in

the form OF
.y
E =)\— 3.13
5T (3.13)
where A is the rate of an unspecified scalar function which cannot be negative
in order to take account of the irreversible character of the plastic deformation.
At any time ¢ in every material point & € €2 the following possibilities may

be distinguished:

F <0 then A=0 — elastic state
F=0 and M=0 — nplastic state: neutral loading (3.14)
F=0 and X>0 — nplastic state: plastic loading

Thus, the process (or loading) is termed plastic, if it is accompanied by an
increment of plastic strain, otherwise it is elastic.
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As can easily be seen, the relations (3.14) can be written equivalently as
the complementarity conditions

F<0 and A>0 and FA=0, (3.15)

which in conjunction with equation (3.13) constitute the very characteristic
loading /unloading criteria of the theory of plastic flow.
Many researches supplement (3.15) by the so-called consistency condition

FA=0. (3.16)
which is de facto redundant because the following statement holds.

Proposition 3.1. The loading/unloading conditions (3.15) imply the consis-
tency condition (3.16).

Proof. Let F(t) < 0 at given time , then F(t) is not restricted but
by (3.15)3 we have A = 0, so (3.16) is satisfied. If F(t) = 0, there are two
cases: (i) F'(t) = 0, so (3.16) follows trivially and, (i) F'(t) < 0 which leads to
F(t+ dt) = F(t) + F(t) dt < 0, so again by (3.15)5 we arrive at (3.16). O

The above observation shows that the loading/unloading conditions (3.15)
completely control the plastic flow process of an elastic-plastic material. We
use (3.15) as our point of departure for the VI formulation to be given below.

The precise way in which the yield function changes during the deformation
process is a complex issue. For this model problem we adopt the Huber—
von Mises yield criterion with isotropic hardening

F=F(T,k) = F(T,E") = f(T) — x(e") (3.17)

where

F(T) = \/313(dev T) = \/g | dev T, (3.18)

k(P (L) = K </0t & (1) dT) , (3.19)

with devT = T — 1(tr T)I being the deviatoric part of the stress tensor, and
éP denoting the rate of effective plastic strain

2 .
&P = \/; |E”|. (3.20)

Making use of the flow rule (3.13) and definition (3.20) we obtain
=\ (3.21)
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Hence the function k can be expressed as a function of the plastic multiplier,
k = k(A(t)), and we impose on it the following conditions

_ Os(N)
X

where oy > 0 is the initial yield stress taken from a uniaxial tension test.

Upon substituting T' according to equation (3.10) into equation (3.17) we
can obtain the yield condition, hereafter denoted by G, expressed in the strains
E and EP,

k(0) = oy, K >0, (3.22)

F(A[E — EP|,E?) =G(E,E?) = g(E, E?) — k() (3.23)
with
g(E,EP) = f(A[E — E"]). (3.24)

Let M, N € Sym denote the 'normals’ to the surfaces defined by the
functions g and f, respectively,

_ 99 _ 91
=5 N=35 (3.25)
then by (3.24)
N = A™'[M], (3.26)

where A~! is the inverse of the elasticity tensor A € LinLin. In particular,
for the isotropic material and the Huber—von Mises yield function we have

dev E°¢
M= Ve = 2
‘/6“|devEe| (3:27)

In the sequel we shall need the following inequality
M A" M) <ky, 0<ky<oo, (3.28)

which is satisfied in view of (3.6) and (3.27).
Finally the flow rule (3.13) and the conditions (3.15) can be rewritten as

E°=AN=)A"[M], (3.29)
G<0 A>0 G-A=0. (3.30)

Summing up, we emphasize that the relations presented above describe the
response at the level of a generic material point of an elastic-plastic continuum.
These requirements will be formulated for the body as a whole in the next
section.
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3.1.2 Variational inequality formulation

In this section our aim is to develop a weak formulation of the elastic-plastic
boundary value problem, as defined by the equilibrium conditions (3.1) and the
plastic flow conditions (3.30). The crucial point in our further consideration is
the equivalence which exists between a complementarity problem and a class
of variational inequalities which is formulated as Lemma 2.3.

We begin with a weak form of the equilibrium conditions. Let V' be the
set of all kinematically admissible displacements of the body,

V= {v e HY(Q,RY) | v|r, = 0 in the sense of traces} (3.31)

where H'(Q,R?) is the usual Sobolev space. We remark that the homoge-
neous conditions for the displacement vector on the boundary are taken for
convenience, this is commonly used cf. [20, 167].

The weak formulation of the equilibrium condition (3.1) for the case of
linear elasticity, i.e. E = E° may be formulated as follows:

Find u € V such that

a(u,v) = f(v) forall veV. (3.32)

The bilinear form a : V X V — R and the linear form f € V* ie. f:V — R,
are defined by

a(u,v) = /QE(’U) -A[E(u)] dz = /QV’U - A[Vu] dz, (3.33)

f('v):/ﬂf-'v d:1c+/F fr-vds. (3.34)

By making use of the split (3.9), we can express the weak form of the
equilibrium condition (3.1) as

a(u,v) — p(EP,v) = f(v) forall veV (3.35)

where

p(EP,v) = / E(v) - A[EP] dz. (3.36)
Q
Let K stand for the closed convex positive cone in L2(), i.e.
K={ueL*Q)| (u,v)>0VYv>0inL*Q)}, (3.37)

where (-, -) denotes the inner product in L?(f2), i.e. for u,v € L?(f)

(u, v) = /Qu(ac)v(a:) dz.
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Now, by virtue of Lemma 2.3, we can write the complementarity conditions
(3.30) in the weak form as the following variational inequality

e K <—G (E(u),EP(u,A) , 7—A> >0 forall yeK. (3.38)

The weak setting of the elastoplastic IBVP (3.1), (3.29), (3.30) may be
formulated in the following manner.

Find the pair (u,A) € H'([0,T],V) x HL([0,T], K) such that

a(u,v)—p(Ei’(u,x),v) — fv) VYoveV

(3.39)
<—G(E(u),Ep(u,).\)),'y—).\> > 0 Vye K
with, for € Q and fixed ¢ € (0,77,
. t .
EP(u,)\) = /tO Mz, 7) A7 [M (u(x, 7))] dr. (3.40)

Thus, our elastoplastic deformation process is governed by the system that
consists of a variational equality (3.39); and a variational inequality (3.39),.
In the language of mechanics the variational equality assures the equilibrium
of the body during the process, whereas the variational inequality controls the
development of admissible plastic strains within the body and may be regarded
as a weak formulation of the consistency condition. Notice that although the
variational inequality (3.39) contains rates, it differs from classical parabolic
inequalities [27]. From the computational viewpoint, in order to solve the
system (3.39) effectively in practical problems we have to employ numerical
techniques based on approximations in space and time.

Let us consider the incremental problem in time, applying an implicit
integration scheme known as the catching-up algorithm. Within a typical
time-step t,_1 — t, the state of a body at time ¢t = ¢,,_1 € (0,7T) is given and
the task is to determine its state at time ¢ = ¢, € (¢,-1,7]. We shall denote
the quantities at a fixed ¢t = ¢,, with the subscript n, thus e.g. u, = u(t,,-) isa
function only of the space variable . By A we shall denote a finite increment
operator, e.g.

Uy = Up_1 + Auy,, (3.41)
An = A1+ AN, (3.42)
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The finite increment of the function G(E(u,), E?) can be expressed as

Jdg Ok
— - (AE, — AEP — AN,
OE® it ( n) + O\ —t

AG, =
= M (uy,) - E(Auy) — (M(un) AT [M (uy)] + "5;1) ANy (3.43)

The incremental problem for the system (3.39) at time ¢ = ¢,, takes up the
form

Find the pair (Au,, AN,) € V x K such that
a(Aup,v) — p(AMAH M ], v) = fon—1(v)
(—Gno1 — My, - E(Auy) + (M, - A7 M) + kL) Adp, v — ANy ) >0

for all (v,v) €V x K.

(3.44)
In (3.44) G, is the known space distribution of the yield function at previous
time level t = ¢,,_1 and

fon—1(0) = fn(v) —a(un_1,v) + p(EY |, v). (3.45)

Note that the normal M, = M (u,,) is evaluated at the current state from
the displacement vector w, which makes the VI (3.44) nonlinear. An iterative
algorithm for solving the system (3.44) and results of numerical experiments
for a test problem are contained in [90]. Here we wish only to mention that
the algorithm consists of the equilibrium and the projection step. In the next
section we investigate the question of existence and uniqueness of solutions to

the problem (3.44).

3.1.3 Existence and uniqueness

In this section we show that the operator A corresponding to the VI formula-
tion (3.44) is Lipschitz continuous and strongly monotone. These properties of
A guarantees the existence of a unique solution to system (3.44). In studying
this question we simplify the notations by introducing the following sets and
elements

V=V xA, A =L*(9Q), (3.46)
K=V xK, KCA, (3.47)
u=(u,), v=(v,7), (3.48)
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with the corresponding norm of v € V defined by
loll3 = ol + 3. (3.49)
For brevity in notation we drop the index of time n and we denote:
M,,K = M(u,_ 1+ Auy,), Auy, = (Auy, AN,), (3.50)
(lnn—1, V) = fap-1(v) + (Gn-1, 7) - (3.51)
We introduce the operator A : YV — V* by
(Au, v) = a(u, v) — p(A, v) —e(u, y) + h(A, 7) (3.52)

wherein ¢ is same as in (3.33), p corresponds to (3.36) and the others are

a(u, ) :/QE(v)oA[E(u)] do = /QV'U-A[VU] du, (3.53)
BN, v):/QE(v)-MuA do = /QVv-Mu)\ da, (3.54)
e(u,’y):/QMu-E(u) v dp = /QMu-vm dz, (3.55)
B\ ) = /Q (M - A [My] + 5')A da. (3.56)

It is interesting to notice that the linearization and implicit time integration
procedure we use lead to a symmetric elastic-plastic boundary value problem.

With the above notations we can rewrite the problem (3.44) as the varia-
tional inequality:

Find Au, € K such that
(A(Aup), v —Aup ) > (lpp-1, v—Au,) YveK. (3.57)
We show that the operator A possesses some useful properties.

Lemma 3.2. The operator A is Lipschitz continuous, that is, there exists a
positive constant k < oo such that

||[Av — Aul

v < kv —ully. (3.58)

Proof. By virtue of (3.6)9 and (3.27) it follows by standard arguments
(Cauchy-Schwartz inequality and equivalence of norms) that the bilinear forms
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a, p, h and the form e are continuous in the sense that there exist positive
constants k1, ko, k3, k4 such that

la(u, v)| < ki [lullv [Jv]lv, (3.59)
DA, v)| < Fa [[Alla lv]lv, (3.60)
le(uw, )| < ks llullv [[v]la, (3.61)
(R < Ea [[Ma 17 a- (3.62)
To show the requirement (3.58) we consider
(Av— Au, w) = alv—u, w)—ply—A, w)—e(v—u, )+
h(y =X\, Q) (3.63)
with w = (w, (), and make use of estimations (3.59) to (3.62)
[(Av = Au, w)| < kiflv —wllv lwlly + kally = Ma [[wl]lv +
ksllv = ullv [ICl[a + Eally = Alla l[Clia
< gk o —wully + by = Alla) (sl +[1la)
= Ellv—uly wly (3.64)

where k = 2 max{ki, ko, k3, ks} and we have used the inequality o + <
V2 (a2 + ﬁ2)1/2. Now, in the light of the definition

| (Av— Au, w)|

|Av — Aully- = sup (3.65)
weV—0 [[w]ly
and condition (3.64), the requirement (3.58) is satisfied. 0

We shall need a modification of Korn’s inequality.

Lemma 3.3. Let Q € C%!. Then there exists a positive constant ki > 0 such
that

/Q|E(v)|2 dz > kg ||v||} for every wveV. (3.66)

Proof. See Lemma 6.2 of KIKUCHI & ODEN [70]. 0

Further we are concerned with the case of an elastic-plastic material that
work-hardens, i.e. the function k is strictly monotone, ' > H,, > 0. Moreover,
let k4 denote the lower bound of A, cf. (3.6), and let 3 = 1— 3 with 8 € (0,1).
Our proof follows that of JIANG [65] who studied an elastic-plastic problem
with a similar mathematical structure, see also REDDY & GRIFFIN [154].
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Lemma 3.4. Let the elastic-plastic material exhibit strictly positive strain
hardening. Then the operator A is strongly monotone, that is, there exists a
constant ky > 0 such that

(Av— Au, v —u) > ko |jv —ul% (3.67)
Proof. Let us denote
L=(Av—Au, v—u).
We have

L=a(v—u, v—w) — 5y~ A v—u)— e(w—u7—A) & h(y— A 7~ N
= [ (B0 —u) = A MLy = X)) - ALB (o —w) = A7 M) = V] da+
[ Rer=26-
> [ kalBo = w) = 47 MLy = ) - (B(o ) = A7 [Mu](y = ) dot

/ Ky — Ny — ) da
Q

2/9 {/-cAﬁE(v —u)-E(v—u)+ka (ﬁE(v —u) — L p [Mu](y — A))

VB
(VBB —w)~ A MG - ) | - A A (M- Y
NG 5
+ Hy(y =Ny =N} d
> [ {rap B0 - 0l = 5 A a7 DI - N 4y - N2} o
> [kl - wp + i, - 220G -zl a, (3.69)

where k4 and kjs are positive constants defined in (3.6) and (3.28). Now
taking 8 = MI#M) and using (3.66) we have

1
lv—ul} +=Hy [y = A7, (3.69)

kaHpk
(Av— Au, v —u) > ATpRK 5

T Hy+2kaky
Hence for this choice of /3, (3.67) is satisfied with

. kAHpkK 1
- AR g b.oO
ko mm{Hp+2kAkM’2 ”}
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Finally, we summarize the results in the following theorem on the existence
and uniqueness of solutions to (3.57). Recall that (3.57) is merely a re-written
expression for the elastic-plastic boundary value problem (3.44).

Theorem 3.5. Under the assumptions made on the data, there exists a unique
solution of the problem (3.57). The solution depends continuously on data
ey

Proof. In the light of Lemmas (3.2) and (3.4), the proof is a standard
result in the theory of variational inequalities, cf. Theorem 2.9 and Theorem
2.2. Since the operator A is Lipschitz continuous and strongly monotone, it is
pseudomonotone and coercive. The uniqueness and continuity of the solution
is assured due to the strong monotonicity of A. Indeed, let u; be two solutions
of (3.57),

(Aujy v —u;) > (l;, v—u;) VYveEK, (3.70)
with l; e V*, i =1,2.

Setting v = us_; in inequality (3.70) for 7 = 1,2, we have

<AU1,U2—U1> 2 <l1,U2—U1>,
(Aug, up —ug) > (lg, ug —ug).
Adding the above two inequalities, we finally obtain

<AUQ—AU1,UQ—U1>§<l2—l1,UQ—U1>,

SO
ko llug — w3 < [l = Llly- lJuz = wally, -

Hence, inequality

1
HUQ — U1||v S k_ ||l2 — l1| e (3.71)
0

completes the continuity and uniqueness assertion. O
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3.2 Skeletal structural systems with clearances

In this section we are concerned with the skeletal structural systems which
may exhibit both the instantaneous elastic-plastic response as well as the time-
dependent viscoelastic-plastic one. An additional feature of these systems is
the presence of clearances. On the level of the discrete matrix description we
use, the latter may be the nodal values of functions describing the inherent
property of the material obtained by a finite element approximation, or repre-
sent the existing gaps between different constituents of the structural system,
e.g. an engineering structure and its foundation, unilateral constraints at sup-
ports. The source of inequality relations governing the problem considered
here is the yield function and the clearance function, defined in a piecewise
linear fashion. As concerns these general concepts we follow PRAGER [146],
MAIER & CORRADI [104, 22] and GAWECKI [43]. We have enhanced the
elastic-plastic material model in two aspects: (i) material behaviour inside the
yield surface may be viscoelastic and, (ii) the associated IBVP is formulated
and solved as a sequence of nested (mixed) linear complementarity problems.

In the proposed material model the viscoelastic and plastic strains are gov-
erned by different constitutive laws. The basic assumption is that the plastic
strains do not influence the viscoelastic properties of the material, the cus-
tomary assumption in elastoplasticity. This macroscopic model is based on
more than one micromechanism responsible for the development of stress in
a solid body. First, if some measure of deformation is smaller than a thresh-
old value (clearance function), then there is no stress in the material point.
The reversible changes in the microstructure of the material are described by
viscoelastic laws, whereas the third mechanism is activated when the stresses
reach some threshold (yield function). Upon releasing the stresses when the
third mechanism is induced there is permanent (plastic) deformation. In brief,
whilst the second mechanism accounts for viscous and rate effects in material
behaviour, the role of the third mechanism is in limiting the stresses which
the material can sustain and in accounting for instantaneous permanent de-
formation. Notice that, depending on the kind of the viscoelastic model used,
the second mechanism may also contribute to the final permanent deforma-
tion. Owing to this particular succession of the mechanisms the suggested
model does not directly fall into the well-known viscoplasticity theories, e.g.
[142, 27, 93, 110]. In developing the model, our motivation was to extend
the viscoelastic model of [79] in order to cover the possibility of instanta-
neous permanent deformation. Thus, a combination of [79] and [45] has led
us to [81]. Yet, we have realized recently that the idea of a conceptual com-
bination in series of viscoelastic and plastic basic elements (spring, dashpot
and slide) is not new, and dates back at least to the early sixties, see e.g.
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[124, 145, 155, 119, 55]. Our considerations here are restricted to initially
isotropic, non-aging linearly viscoelastic-plastic media undergoing small de-
formations under isothermal quasistatic conditions.

In the next section we first recall the constitutive relation and formulate the
discrete-in-space but continuous-in-time problem. The characteristic matrix
notations used for structural systems are explained. Next the time integration
scheme is outlined and the resulting time-step LCP are derived. The question
of existence and uniqueness of solutions to the incremental problems is dis-
cussed. Finally, results of numerical experiments for illustrative examples of
a beam/foundation system subjected to nonproportional loading histories are
included. The results clearly demonstrate the impact of the history of loading
and the unilateral constraints upon the current state of the structural system.

3.2.1 Constitutive relations

In this section we present the fundamental relations that define our model
of slackened-viscoelastic-plastic behaviour. The description is purely phe-
nomenological and derived in the context of one-dimensional structural ele-
ments. (The viscoelastic relations for 3D and 2D cases are given in [82].) The
total strain is additively decomposed into a clearance part €, a viscoelastic
part €”¢ and a plastic part €, see Fig. 1,

e=é 4 e e, (3.72)

or in incremental form
é=é e er (3.73)

The rate form can also be written, for some combinations of the mechanical
basic elements, as the following decomposition

E=é p P (3.74)

in which an instantaneous strain rate ¢’ and a delayed strain rate € are
separated. In fact, the split (3.74) together with é” = 0 will be employed later
at the times at which stress o suffers a discontinuity of first order.

For the plastic strain rate an associative flow rule is used, whilst the evo-
lution of the viscoelastic strain is assumed to be governed by the following
linear differential equation

ago + (11(5' + (125' = boéve + bléve + b2-€-ve (375)

wherein a;, b; (1 = 1,2,3) are viscoelastic material constants. In the particular
case of the standard three-parameter solid shown in Fig. 1, equation (3.75)
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simplifies to the equation of first order

B+ F BB
PR 106 = D20y ve, (3.76)
2 2

P

H o, o

Figure 1: Conceptual model for viscoelastic-plastic behaviour, with clearance
strain

Let us assume that the stress history is known, then we can solve equation
(3.75) for strains and express the result at a time ¢ in the form of linear
hereditary constitutive relation

t
e (t) = / J(t - T)a‘;—(:) dr = F_, [o(r)] (3.77)
to

which emphasizes the fact that the strain at a current moment ¢ depends upon
the entire history of stress from a time ¢ = tg to the time ¢. Usually one takes
to = 0 and zero initial condition which should be defined at the left-hand side
of time ¢, i.e. t =1t; =19 — 0. In (3.77) J(s) denotes a creep function, which
e.g. for the viscoelastic three-parameter solid shown in Fig. 1 is

J(s) = Eil [1 + % (1 - exp(—%s))] . (3.78)

Suppose the deformation process of a slackened system made of the
viscoelastic-plastic material has taken place on times 7 along the interval (0, ¢],
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i.e. 7 € (0,¢]. Then the state of the system at the present instant ¢ € R,
with 7 € (0, ], is governed by the following relations.

GENERAL RELATIONS

1) e(t) = Cu(t), kinematic compatibility,
2) p(t) = CTo(t), equilibrium,
STRAIN DECOMPOSITION
3) €(t) = €(t)+ e (t) +el(t),
LINEAR VISCOELASTICITY
4) ec(t) = Frlo(r)],
PLASTICITY
5) e(t) = NX(t), i) = fg A(7)dr, associative flow rule,
6) A(r) = 0,
7) f(r) = N'o(r)— HX(T)—k <0, yield function,
8) A(r)-f(r) = 0,
SLACKENING (UNILATERAL CONTACT)
9) o(r) = My(r), normality law,
10) Y(r) = 0,
11) g(t) = MTé(r)—1<0, clearance function,
12) (r)-g(r) = 0.

(3.79)

The manner in which the time dependence of the problem quantities is
displayed in the relations (3.79) is just to indicate which of the quantities are
time-dependent and where the history of the deformation process is involved;
of course, the conditions of equilibrium (3.79), and of geometric compatibility
(3.79); must be satisfied at each instant 7 € (0,¢]. Furthermore it should be
mentioned that relations (3.79) represent the finite-dimensional model of the
whole structure/foundation system obtained by means of the finite element
method, which consists of the structure’s elements and those modelling its
foundation. In fact, the similar relations as (3.79) are valid at the elemental
level, the system (3.79) being obtained by the usual assembly process. Al-
though the aspects of finite dimensional approximation are very important, in
this paper we treat (3.79) as granted and wish to focus our attention rather on
the time approximation of the problem at hand. Yet, let us recall merely the
notations used in (3.79). The geometric compatibility condition (3.79); states
a relation between the vector of nodal displacements w(t) and the vector of
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generalized strains, with C' being called the kinematic compatibility matrix
whose transpose C1 defines the equilibrium condition (3.79)s. By p(t), o(t)
we denote the vector of external nodal forces and the vector of generalized
stresses, respectively. Notice that the vectors u, p, and €, o should satisfy
the compatibility condition of virtual work, p - u = o - €. The development
of plasticity effects is governed by the associative flow rule (3.79)5 and com-
plementarity conditions (3.79)s - (3.79)s, in which the piecewise linear yield
function (3.79)7 is defined by (constant) matrix N collecting outward normal
vectors to all segments of yield function f and linear hardening matrix H,
A is the rate of plastic multiplier A. The slackening (or unilateral contact)
relations (3.79)g - (3.79)12 have a similar structure. Vectors k and ! contain
values of the plastic and clearance moduli defined at the elemental level. It
should be stressed that entries and dimensions of the above matrices depend
on the space approximations applied.

3.2.2 Time discretization and the nLCP formulation
Time discretization method

The viscoelastic-plastic model proposed in the preceding section governs an
evolutionary deformation process in which the dependence on time is two-fold.
First, the viscoelastic part €”¢ is time-dependent, whereas for the plastic part,
which is path-dependent, the time variable ¢ merely labels the succession of
events. For the time integration of the viscoelastic part of strains we will use
the method due to SWITKA & HUSIAR [176], already applied for unilateral
contact problems [79, 87, 88]. In the framework of nonlinear viscoelasticity
[4], such a method is called the creep approach, other integration schemes are
discussed in [196, 189, 161]. Now, by selecting instants ¢, on the time axis, i.e.
tn € R4, we can divide it into a number of finite intervals ¥, = t,—tp—1 C R.
In the sequel we indicate a function of ¢ at instant ¢ = ¢,, by a subscript n,
e.g. €, = €(ty). In the method [176], the strain € is solved from the differential
equation (3.75) for a piecewise polynomial approximation of stress successively
within each time interval, which leads to the following recurrent expressions

€ = YnOn + -1, G =mOn+énn-1, n=12..., (3.80)
with
énn—1=hp -8, ho = {hin, han, han, han, hsn, hen}",
nm 1= hy, - 8¢, by = {hin, hon, han, Ban, Bsn, hen ™.

In the above relations, scalars 7,, ¥, and vectors h,,, hn depend upon the
viscoelastic properties of a material and the degree of approximation (linear, or
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quadratic), whereas s,,_1 is a vector which describes the state of the material
at a previous instant, accounting only for the viscoelastic strain part,

326—1 = {626—17 éze—la U;z—la d;L—la On—1, dnfl}' (381)
By (') we denote in (3.81) and in the sequel the right-hand value of the relevant
quantity, e.g. for stress o we have, o], = 0, + Aoy, where A is the symbol of
a finite increment. The discontinuities which may appear in some state vari-
ables are induced by discontinuous changes in the external loading p(¢) on the
structure. At such time-discontinuity points , we suppose an instantaneous
elastoplastic material response, and consequently a finite increment of strain
is defined as

Ae, = Ael, + A€ + AeP, n=0,1,2,..., (3.82)
with A€ = Ae¢ = Aoy,  AEE = 4Ady, + FoAoy,. (3.83)

The rate of stress depends on the degree of the polynomial approximation:

(

— the linear approximation: Opn = ﬁi —0l_1),
2
7 (

On
— the quadratic approximation: &, = 5 (op —0l,_1) — 01 _1.
It should be remarked here that in the case when the linear approximation is
used the increment of the velocity Aél¢ in (3.83)2 need not to be determined,
only Aelf in (3.83); is needed. Summing up, we want to point out that the
increments of (3.82) can be determined by solving system (3.79), which now
must be satisfied at the right-hand side of instant ¢t = %,,.

Depending on the order of the time approximation applied and the char-
acter of time changes of loadings on the structure, we have to solve from one
to three problems at the selected times ¢ = t,,. These will be discussed in the
sequel.

Time-step t,_1 — ¢,

Because the system (3.79) is nonlinear it is necessary to approach it in an
incremental way. A typical time-step ¢, 1 — %, consists in updating the
known state of the system at previous time level ¢, 1 to the state at current
time level ¢,. Making use of the successive relation (3.80) we obtain the
following updating formula for the viscoelastic strain vector

€,°=Fn,o,+ €, n1 (3.84)

in which F, is a matrix that corresponds to the scalar v, in (3.80) and plays
a role similar to that of the flexibility matrix in elasticity, but here being
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updated from step to step. Associated with the scalar €,,_; is the vector
€,,n—1 by which the viscoelastic state of the system at the preceded instant is
accounted for. At a time discontinuity point ¢ = ¢,, according to (3.83)2 the
following relation between the finite increments holds

A& = FyA6, + FyAa,. (3.85)

The updating of the plastic strain and plastic multiplier vectors is defined
in a usual way

An = Anfl + A)\na

e, = € , + Aé€.

(3.86)

At any two successive time levels we may express the relations (3.79) in
the following incremental form.

TIME LEVEL t = t,,_1 TIME LEVEL t =t
1) €-1 = Cup_y, €n = Cuy,
2) ppo1 = Clo, 1, p, = C'o,,
3) €1 = 65171 +et e g, €, = €, +e°+éh,
4) € = F, 100 1+€1n2, €° = F,0,+€mn 1,
5) Aeh | = NAX, 1, Aeb, = NAX,,
6) AN,—1 > 0, AX, > 0,
7 foo1r = N'ona—HM_1—k f, = N'oy—HA1+AN)—k
< 0, < 0,
8) 0 = AXp—1-Fnoqs 0 = Axy-fos
9) o,1 = My, |, o, = M1,
10) 4, , = 0 ¥, > 0,
11) g, = MTG%_l—l <0, g, = MTeﬁl—l <0,
12) 0 = Y, 1°9n1; 0 = 9,9,

(3.87)

By substituting the stress from (3.87)g into (3.87)2 and (3.87)7, and making
use of the split (3.87)3, for ¢ = t,,, we can reduce (3.87) to the conditions

C'Mi, —p, = 0

HAMN, — N"M+, +k+HX,_y > 0

0

8

bl

MTNAXN, - MTCu,, + MTF, M+, + MT¢,,, | +1+ M7TE

n—1 ’

)

—~ 1V

3.
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with the side conditions
AX, >0, ¥,>0 and AM,-f,=0, ,-9,=0. (3.89)

The two unknown vectors of (3.88), A\, and 1, should satisfy the non-
negativity condition, cf. (3.89), and the orthogonality condition with respect
to the conjugate variable, (3.88)2 and (3.88)3, respectively.

We can formulate the incremental problem under consideration (3.88) as
the following nested linear complementarity problem (nLLCP)— Problem I:

An$n+yn = bn,nfla

Ton >0, x3,2>0, Yin = 0, Yan >0, Ysn >0, zp-y,=0,

(3.90)
where the following notations are used:
0 0 -CTM ]
A, = 0 -H N'™ |,

M'Cc -M'N -M'F,M |

)

Uy, _pn
Ty = A)\n s bn,nfl = kn—l s
"pn in,n—l )

given Dn» k, 1=k+HM\, 1, Zn,nfl =1+ MT(énm,l + 6;’;71).

Step t; — t; at a time discontinuity point ¢ =,

At these times t,, at which the load vector suffers a jump discontinuity in time,
i.e. Ap, # 0, we have to determine the state of the system at the right-hand
side of t,, i.e. at t =t =+t, + 0. This leads to a problem II defined below
which must be solved in addition to Problem I in the case of both the linear
and quadratic time approximations.

The state of the structural system at the time-discontinuity point ¢ = ¢,
is defined by the following relations.
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TIME LEVEL t =1, — 0

1) e, = Cu,,

2) p, = Clo,

3) e, = € +er+eéh,

4) € = F,on+&n 1,

5) Aeh, = NAM,,

6) A\, > 0,

7 f, = Nle,—H\,—k
< 0,

8) 0 = (AXx) - fr

9) o = M,

10) ¥, > 0

11) g, = MTe -1<o0,

12) 0 = (¥n) gn

TIME LEVEL t =%, +0

e, = Cul,
p, = Clo,,
€, = €+ (er+ Ae¥)
+(eh + A,
A€yt = FyAo,,
Aél) = N AN,
AX, > 0,
fi. = N —H\, +AX)—k
< 0
0 = (AX)- £,
o, = My,
n >0,
g, = M'e-1<0,
0 = (%) g

(3.91)

The linear complementarity problem associated with (3.91) has a form
analogous to the prior nLCP and is stated as the following Problem II:

Az, + 1y,

>0

s = ’

Yin =0,

= b

n,n—19

y’Q,n >0, yg,n >0, (wn) : y’n =0,
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where
0 0 -C'"M
Ag= 0 -H NTM |,
M'Cc -M'N —-M"F\M

/ /

u, —Py
r_ ! ! _
Ty = A)‘n ’ n,n—1 k” ’
1l ~
Ipn ln,n—l

=

given pl,, ky, =k+HM\,, 1, ,, | =1+ M (énpn_1+e€h)+M" (F,—F))M1p,,.

ny “nn—

In this way, the original continuous-in-time problem (3.79) has been trans-
formed into a series of linear complementarity problems (3.90) and (3.92),
which describe completely the considered unilateral viscoelastic-plastic con-
tact problem at time ¢,,. In fact, the incremental procedure we have advanced
allows us to analyze quite a complex, also non-proportional loading programme
of the slackened system in which, within a typical time step, plastic strains are
assumed holonomic whilst stresses are approximated with a linear or quadratic
polynomial. At all times ¢,, at which the external load on the system is time-
continuous it is sufficient to solve the nLCP (3.90), but otherwise the nLCP
(3.92) must be solved additionally afterwards using the known vector @, the
solution of Problem I.

For the solution of the nested linear complementarity problems we have
devised a principle pivoting scheme, see Section 2.3. In reference to Lemma
2.10 we want to stress that in the derived LCP (3.90) and (3.92) the properties
of the matrix A,, n =0,1,2,... depend on both the kinematical and physical
properties of the structural system. Firstly, the matrix —A,, = A,, is positive
semi-definite if the matrices H and M ' F, M are positive semi-definite. This
requirement is satisfied in the case of the used Prager’s plastic hardening rule
and the convexity of the yield and clearance regions, together with the non-
negative hardening modulus H'(x) > 0 and viscoelastic parameter ~, () > 0
for all points of the system. Secondly, the existence and uniqueness of a solu-
tion to our problem depends also on the data by, ;,—1 which contain information
on the applied loading and changes in the physical (plastic strain hardening)
and kinematical properties of the structural system in the course of the defor-
mation process. It is clear that the development of plastic strains (hinges) may
convert the initially stable structure made of a viscoelastic- perfectly plastic
material into a structural mechanism unable to sustain any additional loading.
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When using the quadratic polynomial time approximation we need the
rate of stress &/, at the right-hand side of the time #,, at which there is a jump
in the external load, Ap, # 0 or/and in its speed Ap, # 0. To this end,
an additional Problem III must be considered. First, an increment A, is
determined from the equation — Problem IIla:

Ko A, = Ap, + C Fy ' Fy A&, (3.93)

where

K,=C'F,'¢C
is the stiffness matrix of the structural subsystem, containing only the con-
tributions of these elements of the foundation which are in contact with the
structure. With the superscript ~“ we denote here the restriction to this sub-
system. The boundary conditions on A, can easily be derived from those

imposed on the displacement vector u,. In deriving (3.93) we made use of
(3.85) and the equation — Problem IIIb:

=T s .
C A&, =Ap,. (3.94)
Having determined A, we can calculate
Aelt = C Ay,
. ~—1 ~ 1% ~
and finally
o, =0, + Aoy, (3.95)
The equation (3.93) is valid provided that the matrix K is non-singular,
which depends both on the matrix C and the matrix Fy. Of course, when
the matrix FO is equal to zero, then K o is singular. This is the case with
any viscoelastic model for which the coefficient 5 = 0, in particular with the
Kelvin-Voigt model. (In reference to the constitutive equation (3.75) we recall
that -y is defined as follows: g = a1/by, if by # 0,09 = 0, and vy = ag /by
if by # 0.) In the situation Fy = 0 it is sufficient to satisfy equation (3.94).
. . . . =T
However, it should be noted that the system of equations (3.94), in which C
is a M x N rectangular matrix with M > N, may not possess a solution and
if any, the solution may be non-unique. Following the idea presented in [46]
. . . . =T
we can show that there exists a unique solution to (3.94) if rank C~ =
and the structural subsystem whose elements contribute to the matrix C is
. . . =T . =T
statically determinate. The requirement on the rank of C' | i.e. rank C =
is equivalent to the following condition that det C’C’T #0.

In the next section we shall discuss the numerical results on examples of
practical importance in engineering.
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3.2.3 Numerical examples

This section contain the numerical results which we have obtained with our
material model for some typical engineering test problems. From the four
examples considered [81], we present here Examples 1 and 4. We start with
the bending problem of a simply supported beam made of different viscoelastic
materials. The main purpose of Example 1 is to test the convergence rate
of the piecewise linear approximation for the prescribed piecewise quadratic
history of loading. Notice that in Example 1 it suffices to divide the beam into
only two finite elements in order to get numerical results which are exact as
concerns both the statics and kinematics of the problem. More specifically, the
description of the kinematics with only a few elements, the number of which
is determined by the number of forces applied and supports of the beam, is
exact under the assumption that the lumped plastic hinges may appear in the
cross-sections where the forces are applied. The latter is true for a beam with
ideal I-cross-section and if the material of the beam is perfectly plastic. In
other cases, where the plastic hardening modulus H' is positive and/or the
beam may come in contact with a foundation, the finite element discretization
of the beam must be finer. As checked numerically, the used time integration
scheme and numerical algorithm exhibit a good convergence rate even in the
case of complex boundary conditions and loading histories, Example 2 in [81],
and is capable to solve the difficult interaction problem, cf. [25], for a freely
resting structure on a unilateral foundation Example 3 in [81]. A different
numerical procedure for similar problems is proposed in [44].

Example 1

As the first example we consider a simply supported beam, shown in Fig. 2,
made of different viscoelastic materials and loaded with the point force P =
P(t) whose time evolution is depicted in Fig. 2a. We assumed the following
material parameters F; = Ey = E = 2.0-10° MPa, 7, = 19 = 1 = 4.0 - 10°
MPa- hr, which are used in the governing differential equations of the following
viscoelastic models [164], for the standard model see (3.76):

— the Maxwell model )

EU—FEO.':E‘ve,

— the Kelvin-Voigt model
o=FEe"+ne,
— the Burgers model

moomo 2 L M2 e T2 e
0+<E1+E2+E2>0+E1E20 1€ +—E2e.
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Figure 2b shows the time evolution of the deflection of the midspan point for
the different viscoelastic material models when the load P varies piecewise
linearly with a jump at £ = 4.00 hr. Note that in this case the piecewise linear
time approximation furnishes the exact solution for any time step 9, < 4.00 hr,
in particular in order to determine the states at ¢ = 4.00 and ¢ = 8.00 it suffices
to take ¥ = ¥9 = 4.00, and then we just solve Problem I at times 4.00, 8.00
and Problem II at £ = 4.00. The same results we can obtain by employing
the piecewise quadratic time approximation, but now at times ¢ = 0.00 and
t = 4.00 we have to additionally solve Problem III. However, if the evolution
of P is piecewise quadratic, then the other time approximation furnishes the
exact solution to the whole deformation process which is illustrated in Fig. 2c
for the characteristic midspan deflection. In other words, with the piecewise
quadratic approximation we can determine exactly the state of the beam at
t = 4.00 and ¢t = 8.00 by taking ¢; = 99 = 4.00 and solving Problem I at these
times and Problems II and IIT at ¢ = 4.00. Moreover, it is interesting to remark
that the deflection wu(¢) is a non-monotone function for times ¢ > 4.00 while
the evolution of the load is monotone. This effect is even more pronounced in
case of the quadratic load history.

Fig. 3 shows the convergence results of the midspan deflection of the beam
for the piecewise linear approximation of the quadratic evolution of loading
P(t). The time step 9; is varying (but being constant along the time interval
[0.00,8.00]) from ¥ = 9 = 4.00 hr to 95 = 0.125 hr by the formula ¥; = /2!
with 4 = 0,1,...,5. (On the abscissa of Fig. 3 the locations of log; are
marked merely with the coefficients 1/2'.) As can be seen the piecewise linear
variant of the time integration method exhibits a very good convergence rate,
since the error is from about 0.6 % for the standard model to 2 % for the
Kelvin-Voigt model at ¢ = 4.007, when the basic time step is divided into
only four steps, i.e. ¥; = 9/4 = 1.00 hr. Due to the particular changes of load
P(t) the errors at ¢ = 8.00 are even smaller.

Example 2

In the present example 2 (example 4 of [81]) the material response of the
beam is assumed to be elastic-perfectly plastic with plastic hinges lumped
at nodes. The foundation is treated as the viscoelastic-plastic medium of
Winkler-type. The beam is discretized with the two-node four-parameter cubic
elements and the foundation is modeled with the truss elements located at the
beam nodes. The material of the beam is characterized by the Young modulus
E =2.0-10° MPa, H' = 0.0, inertia moment of the cross-section I = 104 m?,
yield moment My = 0.16 MNm. The viscoelastic response of the foundation
is described by the standard three-parameter solid, Fig. 1. We have assumed
the following material parameters: E; = 60.0 MPa/m, Ey = 30.0 MPa/m,
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Figure 2: Example 1. Simply supported beam subjected to force P(t). (a)
Piecewise linear (thin line) and piecewise quadratic (thick line) history of P;
Deflections of the midspan of the beam for various viscoelastic models under
the piecewise linear (b), and piecewise quadratic (c) evolution of P
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Figure 3: Example 1. Results of the convergence test of the piecewise lin-
ear approximation of the piecewise quadratic history of loading, for various
viscoelastic models
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ne = 103 MPa-hr (hour), H' = 10.0 MPa/m, oy = 0.15 MPa/m. For the
purposes of the numerical examples presented here the values of the material
parameters of the viscoelastic-plastic models are chosen to represent properties
of a generic material (different for the beam and for the foundation) rather
than a specific material. The gap between the beam and the foundation is
modelled as clearance strains with the modulus [* equally distributed under
the beam (I~ is assumed to be a sufficiently great number). We have analyzed
a two-span fixed-ended beam shown in Fig. 4. The moduli of the clearance
strains at the supports are equal, [T = [~ = 0.01 rad. The beam of 12
meters in length was divided into 120 finite elements. In the calculations the
piecewise linear time approximation method was applied with constant time
step 9, = 1.0 hr. The gap between the beam and its foundation is [T = 0.005
m. The beam is subjected to two point loads P, and P whose variation in
time is shown in Fig. 4a. The load P; has a jump of 0.10 MN at time ¢t = 8.00
hr, and at time £ = 32.00 hr both forces P; and P, are quickly removed
(another jump) from the beam. Note that at times ¢ = 8.00™ (i.e. on the
left-hand side of that instant), ¢ = 16.00, and ¢ = 32.00~ the load levels are
equal, i.e. P, = 0.25 MN, P, = 0.15 MN. The results for the beam without
clearances at the supports are shown in Figs. 4b, ¢, d, e at time £ = 8.00 hr
where the force P; is suddenly increased from 0.25 MN to 0.35 MN. We can
see that at ¢ = 8.00~ the displacement u is a smooth function, the bending
moment does not reach its limit value of My = 0.16 MNm, and the contact
appears for z € (1.6,4.5)U(8.1,10.0), with the plastic stress of oy = 0.15 MPa
being reached in the foundation in the region z € (2.3,3.8). The situation is
drastically changed after the load increase from 0.25 MN which induces plastic
hinges in the beam, at the left support, £ = 0.00 m, and at z = 3.00 m where
P, is applied. The contact pressure spreads over a larger area under the first
span of the beam, whilst it shrinks under the second one.

Fig. 5 shows the states of the beam/foundation system at time ¢ = 32.00 hr
at which the external load is instantaneously removed from the beam. Owing
to the previous plastic deformation of the beam at its supports and beneath
forces P and P, there are some residual deformations in the beam, see Fig.
5a, which are accompanied by the residual bending moments, Fig. 5d.

At t = 32.00" the foundation exhibits both permanent deformations, thick
line in Fig. 5b and some viscoelastic ones which will eventually disappear in
the case of the tree-parameter solid model we used. That the history of the
deformation process plays a great role is again demonstrated in Fig. 5c, where
the distributions of the foundation pressure at the same load level, P = 0.25
MN, P, = 0.15 MN, but at different times can be compared. Note that under
the first span of the beam the pressure is nearly equally distributed at time
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Figure 4: Example 2. Two-span fixed-ended beam with rotation clearances
and its foundation. (a) History of forces P, and P,, (b) Deflections of the
beam, (d) Bending moments and (e) Foundation pressures at the left (thin
line) and the right (thick line) hand-side of instant ¢ = 8.00 hr, for the beam
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Figure 5: Example 2 cntd. (a) Deflections of the beam at ¢ = 32.00~ (thin
line), ¢ = 32.00" (thick line). (b) Viscoelastic displacements (thin line) and
plastic displacements of the foundation (thick line) at ¢ = 32.00" hr. (c)
Distribution of foundation pressure for the same level of loads at different
times: ¢ = 8.00" hr (thin line), ¢ = 16.00 hr (medium line), ¢ = 32.00~ (thick
line). Distribution of bending moments at ¢ = 32.00 (thin line), ¢ = 32.00™
(thick line), for the beam without (d) and with (e) clearances at the supports
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t = 32.00". The residual moment in the beam with clearances is different
from that without clearances, compare case (d) and (c) in Fig. 5.

3.3 Concluding remarks

The main idea behind the variational inequality approach developed in Section
3.1 is a weak form expression of the loading/unloading criteria which, as has
been shown, are equivalent to a variational inequality. The existence of unique,
stable solutions to the associated incremental boundary value problem is es-
tablished, under the commonly taken hypotheses. From the computational
viewpoint the advantage of the VI formulation is in satisfying the consistency
condition as well as loading/unloading conditions automatically, and what is
equally important not only pointwise at the Gauss points (see e.g. [163]) but
in a weak sense for the body (2 as a whole. In the presented formulation
the Huber — von Mises yield function has been employed, but this approach
can be applied also to other yield criteria, e.g. non-associative plasticity or to
multi-surface non-smooth plasticity as presented in [89]. It is quite easy to
directly extend this formulation to gradient dependent plasticity [120] where
higher-order spatial gradients of the plastic multiplier A are included. The
proof of Lemma 3.4 shows that the associated operator A will remain strongly
monotone even if the requirements on the function x(\) are weakened, pro-
vided one replaces the latter by k[A\] = k(\)+ gradient terms (cf. Eqns. (4)
and (9) in [120]).

A new material model accounting for slackening, viscous and plastic effects
is suggested. The model formulated in the computer-oriented format of struc-
tural mechanics. The results of many numerical experiments indicate that
in the viscoelastic-plastic structural system subjected to variable loads some
complex evolution processes are taking place, including unloading, reloading
and redistribution of stresses due to plastic effects, creep and stress relaxation,
and clearances. The simple case of residual stresses in Fig. 5 is just a signal of
the complex situation in rails, e.g. cf. ORKIsZ [136]. But, as defined here, our
model describes only very roughly the surface phenomena. For a better de-
scription of the complex processes taking place on the contact surface, SZEFER
has introduced the concept of a singular surface, see e.g. [179].
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In this chapter an attempt is made to develop a workable model for a 3D body
made of a material undergoing martensitic phase transformations under com-
plex nonproportional loading conditions. The model is intended to describe
the hysteretic behaviour of shape memory alloys (SMA) in the temperature
range of pseudoelasticity, i.e. for temperatures § > A(} where A% is the conven-
tional austenite-finish temperature at the stress-free state. The most decisive
characteristics of this kind of phase transformations (PT) are outlined in Sec-
tion 1.2, where many relevant references are cited. Recall that martensitic PT
is a deformation process that consists of sudden changes in the crystal lattice
of the high temperature phase with greater symmetry (austenite) and that of
the low temperature phase with lower symmetry (martensite). The new crys-
tal structure replaces the parent material in the areas where PT have taken
place. All possible crystal lattice rearrangements which appear in new phase
orientations are called variants of martensite and can be determined from the
symmetry of the parent phase (from crystallographic relations). Martensitic
PT lead mainly to distortions in shape and only to small volumetric changes.

It is generally agreed that martensitic PT are the result of competition
between changes in chemical free energy, surface energy and the potential en-
ergy of the heterogeneous system during the transformation. Although the re-
sulting microstructures are crystallographically reversible, martensitic PT are
thermodynamically irreversible for they induce hysteretic effects, accompanied
by dissipation of energy. Hence the use of irreversible thermodynamics in a
description of PT is expedient. In a general framework of thermodynamics,
two additional ideas are apparently advantageous. These are the concept of
constrained equilibrium introduced by KESTIN and RICE [68, 156] and that of
threshold values of the driving force for PT which has been used by RANIECKI
et al. [151] and others, and was formalized by LEVITAS [97] as the postulate of
realizability. We recall that at constrained equilibrium the rate of some inter-
nal variables may vanish even though the corresponding thermodynamically
conjugate force is non-zero.

The approach proposed here is based on minimization of an effective free
energy for the mixture of phases, in which volume fractions play the role of
internal variables. The effective free energy of the phase system, W, is a result
of the homogenization procedure (relaxation at fixed volume fractions ¢) of
the piecewise quadratic potential adopted. At a constant temperature 6, it
may be written in the form

W(B,¢) = 5 (B~ D(c)-A[B ~ D(c)] + m(c) + Wui(e):  (41)
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In (4.1) we designate by E the tensor of total strains, ¢ the N-tuple of volume
fractions of martensite, D(c) the effective transformation strain, A the (com-
mon) tensor of elastic moduli, w(e) the energy of the mixture at the stress free
state and temperature 6. The last term Wy,ix(e) that accounts for misfits of
the parent and product phases (variants) we call the energy of mixing, but it
is also called interfacial energy [122], and is related to energy of unaccommo-
dation [150]. We consider the PT process as a problem of evolution, with the
natural constraints imposed on the volume fractions ¢,,, 1 < m < N, where
N is the number of martensitic variants, e.g. N =1 for the two-phase system
under study in Sections 4.1 and 4.2, where ¢ reduces to just one entry denoted
by ¢, which must satisfy the constraint 0 < ¢ < 1. In a general case, the
constraints imposed on the volume fractions ¢ are defined in (4.73). Our point
of departure is directly motivated by the developments due to KOHN [75],
LEVITAS et al. [99], I. MULLER et al. [59], and RANIECKI et al. [151]. In the
proposed model the evolution of the volume fractions of phases is governed
by phase transformation criteria (PTC) derived from a form of the second
principle of thermodynamics (Clausius-Duhem inequality). The PTC are fi-
nally expressed in a weak form as a variational inequality that together with
the conditions of quasistatic equilibrium are solved incrementally in time as a
sequence of linear complementarity problems.

The plan of this chapter is the following. First, by way of motivation we
consider the one-dimensional model, where the peculiarities of the marten-
sitic phase transformation IBVP may be demonstrated to some extent also
by analytical calculations. Our main finding here are the great differences in
the local behaviour at a material point and the system behavior at a global
level. In particular the internal loops at the global level are observed only if
the hardening is significantly larger than the material inhomogeneities. The
effects of thermomechanical couplings due to the exothermic character of the
forward (i.e., austenite — martensite) PT and the endothermic character of
reverse PT is investigated. We conclude the 1D case with a brief discussion on
the modelling of internal hysteresis loops. Observe that in the 1D case we use
the usual notations o and e for the stress and strain, respectively. After that,
the two-phase system is considered again but in the variational setting for a
three-dimensional body. The existence of unique solutions to the incremental
IBVP is proved and the results of numerical simulations of the tensile test on
two-phase strips are provided. The obtained numerical results revealed the
influence of the boundary conditions on the deformation modes of the speci-
men, and they are in good qualitative agreement with the available laboratory
experiments. Finally the qualitative analysis is extended to a 3D body made
of a multi-phase material. We close this chapter with a few conclusions.
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4.1 The one-dimensional model problem

We wish to analyze here the macroscopic stress-strain (force-elongation) re-
lations describing the PT process as a simplified one-dimensional problem.
The material point z of a body 2 is an element of an interval on reals R,
ie. z € Q= (0,lp), where lp is the length of the bar. The reason is that the
majority of laboratory experiments have been carried out on wires and, on the
mathematical side, for the 1D problem even tedious analytical derivations are
still tractable, also numerical algorithms can be devised more directly. Our
aim here is to impart the characteristic features of the constitutive relations
governing the hysteretic behaviour and to lay grounds for further developments
related to the 3D case to be considered in the next sections.

More specifically, we are concerned with the mathematical modelling and
computational simulation of hysteretic behaviour typically exhibited by shape
memory alloys in the pseudoelastic temperature range, as observed by 1. Miller
and his co-workers in experimental tests on a bar made of a CuZnAl monocrys-
tal. The internal hysteresis loops are described by means of a discrete memory
variable which can be handled by a monotone path rule. Existence and unique-
ness of solutions is shown in the presence of hardening. We investigate the
limit of vanishing hardening and vanishing material inhomogeneity and show
that the limit depends on their relative size within the limit procedure. The
analytical and numerical results show that under small hardening the phase
transformation process is very sensitive to any inhomogeneities which may be
present (e.g. geometric ones) or are developed in the two-phase system in the
course of the loading/unloading sequences. Surprisingly enough, we obtained
great differences in the local response at a material point and the system be-
haviour, in particular the system displays internal loops only if the hardening
is significantly larger than the material inhomogeneities.

The one-dimensional static theory of elastic bars whose material behaviour
is described by a non-monotone physical law has been studied in [31, 63], with
the energy criterion of material stability for a non-convex smooth strain energy
function. In [1] the authors derived the kinetics of phase transformations
by making use of thermal activation theory. Finally we note that hysteresis
operators of similar problems have been analyzed in [78, 186] and others. Our
approach is different.

4.1.1 The mechanical model

Let us first record the relations that define the model of ideal pseudoelas-
ticity following [59, 99, 151]. The model describes the phase transformation
phenomenon in the shape memory alloy at temperatures above A%, and the



The mechanical model 65

adjective 7ideal” refers to the idealized situation with horizontal yield and
recovery lines in the stress-strain diagram. In what follows we shall assume
a more general case with hardening. With the traditional notations, o for

@ (b)

(e} (e}
_ R {
e T~ X=0 [ ] —J
(5 X <0 S (&) ~_
= ~' D

© (d)

m
o
A

@]

(@] € (@) €

Figure 6: Stress vs strain diagram of ideal pseudoelastic behaviour. Phase
transformation starts at the diagonal AD: (a) Yield and recovery; outer loop.
(b) Internal yield and internal recovery. (c) Internal loop. (d) Internal elas-
ticity and history dependence

stresses and ¢ for strains, some typical pseudoelastic paths in the stress-strain
diagram are shown in Fig. 6. In the macroscopic description of a PT process,
a useful internal variable very often applied is a scalar ¢ which is defined as
a volume fraction of martensite in the (infinitesimal) volume of the austenite-
martensite mixture, i.e. 0 < ¢ < 1. In terms of the phase fraction rate ¢ we
can in general distinguish the following three characteristic stages of the PT
deformation process, cf. Fig. 6:

1. reversible, purely elastic deformation of the parent (austenite, or 1) phase
and product (martensite, or 2) phase, or austenite/martensite mixture,
with ¢ = 0;

2. forward PT: austenite — martensite (or, 1 — 2), with ¢ > 0;

3. reverse PT: martensite — austenite (or, 2 — 1), with ¢ <0.
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Notice that at points in the triangle ABD and line BC the rate ¢ is positive
or equal to zero, whereas at points in the triangle ADE and interval OE, ¢ < 0.
The diagonal AD (including points A and D) plays a critical role in the process.
As can be seen in Fig. 6, on the diagonal the phase transformation initiates
and its direction can be reversed, depending on the sense of strain increments.
In fact, the diagonal is a phase equilibrium line but the states therein are not
in a stable thermodynamic equilibrium.

We consider the simplified case that Young’s moduli in both phases are
equal, i.e. E = E; = FEs. The elastic parts of the strain in each phase are

el =¢, es=¢e—n

where ¢ = Qu/0x is the derivative of displacement u, and 7 is the transforma-
tion strain, a positive material constant. The free energy of the mixture is the
sum of contributions

W = (1— )Wy () 4+ Wa(e§) + Winix(c) (4.2)

in which W; = 0.5 E(£¢)? + w;(0) is the assumed form of the free energy for
each phase that is quadratic in elastic strain. The material constant B in the
expression for energy of mixing, Wiix = 0.5 B(1 —c¢)c, is a measure of the area
of the outer hysteresis loop. The function w;(f) depends on temperature 6,
treated here as a parameter, and we adopted the formula

w;(0) = Cy(6 — 6°) — C,01n(0/6°) + &) — 05 (4.3)

where €9 s?

i, s; are the energy and entropy constants of i-th phase, C, the com-
mon specific heat, and 6° a reference temperature. Using the fact that we
have £§ = ¢§ (due to the same stresses and Young moduli in both phases) we

obtain for (4.2) the final expression

W(e,c) = %E (e —en)* 4+ (1 — Q)wy + cwy + %B(l —c)e. (4.4)

With s indicating entropy, the rate of mechanical dissipation per unit vol-

ume, D = o€ — W — sé, takes the form

WY .. . oW\ . oW .
Y _ - .
D (a age)e + oné (s—i— 80)0 acc_O (4.5)

Further, assuming the constrained equilibrium and making use of the standard
argument,

W _ _ W 0= 0=
= E(e — ¢n), s = =—(1-¢ % o0

(4.6)
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we can reduce (4.5) to the following inequality
D=Xé&>0 (4.7)

where .
X:Un—Aw—ﬁB(l—%) (4.8)

is, as a variable conjugate to ¢, the thermodynamic driving force for phase
transformation. In the case of zero stress, X reduces to the phase chemical
potential XY,

1
X=X"=-Aw - 53(1 — 2¢), (4.9)

which is the driving force for temperature-induced martensitic transformations
at the stress-free state. The difference in the free energies of the phases,
Aw = w9y — w is a linear function of temperature, cf. (4.3).

The equilibrium line X = 0, diagonal A-D in Fig. 6, has a negative slope, so
all equilibrium states are unstable. The instability of equilibrium states is an
origin of the dissipative character of phase transformation process manifested
by hysteresis loops. Note that the driving force is positive in the triangle
ABD and negative in the triangle ADE. In order to consistently account for
the experimental findings of Miiller et al., it is advantageous to use a concept
of threshold values for X. Accordingly, the phase transformation may take
place only if its driving force X equals the threshold value of k* or k—, where
kT > 0 and k= < 0 are given functions of the current state of the phase
mixture. This idea, together with the requirement of dissipation inequality
(4.7) lead to the following phase transformation criteria (PTC)

if X(c) =rt(c) then ¢2>0,
if X(c) =k (c) then ¢<0, (4.10)

if Kk (c)<X(c)<kT(c) then ¢=0.

The following situations concerning the conditions (4.10); and (4.10)y de-
serve further comment. First, the case X = 0 corresponds to the states on the
phase equilibrium line, the diagonal AD in Fig. 6. These states are unstable
and any process along the phase equilibrium line is accompanied by no dissi-
pation. Further, the situations X = £*(c) > 0and ¢ =0, and X = £~ (c¢) <0
and ¢ = 0 correspond to a degenerate problem in which both the comple-
mentary variables, y* = x7(c) — X and ¢ are equal to zero, similarly for
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y~ = X — Kk (c¢) and ¢é. That the phase transformation process, and not an-
other one, starts on the phase equilibrium line and carry on when the condition
X = kTt(c), or X = K (c) is satisfied, may be motivated by the principle of
least work, [190]. The threshold quantities, k™ for forward PT and s~ for
reverse PT are assumed here to be dependent only on the volume fraction ¢
and a new internal variable p. We adopt the functions x™ and £~ in the form

kT = max {L(c—p),0} >0, k =min{L(c—p),0} <0. (4.11)

The new material parameter L should be greater than or equal to B. Notice
that the functions k™ and x~ are a measure of the dissipated energy in the
course of the forward and the reverse phase transformation, respectively. In
fact, relations (4.11) can be derived from the dissipation potential ® of the
form

2(c,p) = 5L(e ), (1.12)

which is a homogeneous quadratic function of the difference ¢ — p. Expression
(4.12) shows that the physical meaning of material parameter L > 0 is that
of the energy which is dissipated while transforming a unit volume of one
phase into the other. We assume that L > B, whereas the case L = B > 0
corresponds to the ideal pseudoelastic flow shown in Fig. 6.

Condition (4.10); is relevant for all horizontal intervals in the ”upper”
triangle ABD, whilst (4.10)2 controls the phase transformation process along
horizontal segments in the "lower” triangle ADE. All the states on intervals
parallel to lines OA and DC are governed by condition (4.10)3. These three
conditions (4.10) when supplemented with the auxiliary one, 0 < ¢ < 1, allow
us to describe completely the stress-strain relationship illustrated in Fig. 6,
including the proper succession of states. The latter is guaranteed by a suitable
updating of the variable p. On the outer intervals, i.e. AB and DE, we
take p = 0 and p = 1, respectively. As applied in this model, the variable
p € [0, 1] plays the role of a discrete memory that "remembers” only the latest
characteristic state of the two-phase system, and it is stipulated here that p
is changed at the intersection point of the actual stress-strain path and the
diagonal AD. A further discussion of the evolution law for quantity p will be
given in Section 4.1.5.

We remark that the considered model of hysteretic behaviour is defined
by five parameters: FE,n, B, L, Aw which can easily be determined from the
stress-strain (force-elongation) diagram in Fig. 6 as shown in [85].

The mechanical problem is now completed by associating the cross-
sectional area a(z) to each value of the axial variable z € [0,l5], where Ip
is the length of the bar. Thus, the effective elastic modulus at z is a(z)E.
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The mechanical problem is now given as follows: For each ¢ € [0,7] and each
z € (0,lp) we have

% (a(x)E[e(t,x) - c(t,w)n]) =0,

/ZB e(t, ) dz = £(t),
0
(c(t,z),p(t, z)) satisfy the PTC (4.10).

(4.13)

The first equation is the elastic equilibrium equation and the second one is
equivalent to the displacement conditions u(t,0) = 0 and u(¢,lg) = £(t).

Note that although the phase transformation problem is treated as a qua-
sistatic one, it possesses time derivatives of the internal variable c. These
derivatives have to satisfy inequality constraints which generate history depen-
dence and the constraint ¢ € [0, 1] must be assured. Hence, it is convenient to
approach this phenomenon in an incremental manner. In the next section we
shall present the formulation of (4.13) that leads to the numerical algorithm
based on the axial force F'(t), being constant along the bar due to the elastic
equilibrium, is the characteristic quantity in the 1D case,

F(t) = a(x)o(t,z) = a(z)E(e(t, ) — c(t, x)n).

In experiments one usually plots only the curve (F'(t),4(¢)) which gives the
stress-strain relation. We will associate to this curve the name ”system be-
haviour” as it averages over all the material points = € [0,lp] where different
local material behaviour may occur. Another, more general approach based on
complementarity conditions and variational inequality formulation was shown
in the note [84] and will be presented in the context of 3D problems later on.

4.1.2 Analytical results

We analyze the phase transformation in a bar as a strain-driven process by
prescribed hard loadings £(t) that is a continuous function of time ¢. First, we
are concerned with the case with hardening that allows us to construct the
unique solution of problem (4.13). Here we use the special feature in the one-
dimensional theory that the sign of E(t) determines for each point z whether
there is loading or unloading. Second, we analyze the case of a homogeneous
bar made of a material without hardening and show that the set of solutions
is very rich. Third, we consider the case L = B + w and a(z) = ap + wpa; ()
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in the limit w — 0, which provides special solutions for the homogeneous case
without hardening. In particular, we show the differences in the unloading
depending on the parameter p which measures the size of the inhomogeneity
relative to the hardening parameter w = L — B. We have found that small
p gives rise to the internal loops presented in Fig. 8 while large p leads to
so-called external loops.

The main observation here is that in every material point the values o(t),
¢(t) and p(t) can be given as functions of £(¢) and the values of ¢(¢,_1) and
p(tn—1) as long as £(-) is monotone on [t,_1,t]. We denote these functions as
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Figure 7: Tllustration for determining the function : (a) Case ¢ > p, (b) Case
c<p

Some elementary calculations using the phase transformation conditions
(4.10) give the following explicit expressions.

Ee¢ for e <e1(e,p),
Ee + Ené(max{c,p}) for e1(c,p) < € <ea(c,p),
Y(e,ep) = Ee — uc for ea(c,p) < e <es(c,p), (4.15)
Ee + Ené(min{c, p}) for e3(c, p) < € <eq(c, p),
Ee —p for e4(c,p) <e,
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wherein the characteristic strains, €;, and £ are given by

ei(e,p) = (y— Lmax{c,p})/p,
e2(c,p) = (v +ve— Lmax{c,p})/u,
e3(c,p) = (v +ve— Lmin{c,p})/p, (4.16)
es(c,p) = (y+v— Lmin{c,p})/p,
£(z) = (v—Lz)/v,

with the material parameters u = En, E = (L — B)E/v, v = L — B + En?
and v = B/2 + Aw. Moreover, we obtain

0 for e <e1(e,p),
pe/v —&E(max{c, p}) for e1(c,p) < e <esle,p),
Cle,c,p) = c for es(c,p) < e <es(e,p), (4.17)
pe/v —&(min{c,p}) for es(c,p) < e <eu(c,p),
1 for e4(c,p) <e,

Ple.ep) = { p if (e > ea(c,p) and ¢ > p) or if (¢ < e3(c,p) and ¢ < p),
T ¢ if (e <es(e,p) and ¢ > p) or if (e > e3(e,p) and ¢ < p).
(4.18)
With these three functions we are able to construct a solution of (4.13)
which, under the assumptions adopted, is unique as stated in the following
theorem proved in [85].

Theorem 4.1. Assume L > B and let £ : [0,T] — R be a continuous, piece-
wise monotone function. Then, problem (4.13) has a unique solution which is
also piecewise monotone in € on the same time intervals. |

In the sequel we wish to address the question why the case L = B (E =0,
no hardening) is highly degenerate and how the limit L — B can be understood
in cases where the material inhomogeneity is also small, further details are
contained in [85].

The homogeneous case without hardening

It can be shown analytically that the case L = B leads to a big variety
of solutions if additionally a(z) = «g, that is the bar is homogeneous. To
illustrate this fact let us consider a simple loading and unloading cycle £(t) =
lmax(1—]1—1%|) which however only reaches the maximal value 4oy = Ip(y/pu+
n/2) that is half way in the hysteresis loop. Starting with ¢(0,z) = p(0,z2) =0
we obtain for /(t) < lpvy/u that ¢(t, z) and p(t,z) remain 0 since we are below
the critical strain. However, for £(t) > Ipy/p and ¢ < 1 the only constraints
on c¢(t,x) are

%c(t,m) >0, /OZB <% + c(t,w)n> dz = £(t).



72 The model problem of phase transformation

Of course, there are a lot of ways to satisfy these conditions. For instance
we may take c(t,xz) = (ul(t) — lp7y)/(unlp) or we choose c(t,z) = 1 for z €
[z1(t),z2(t)] and O otherwise, where 1(¢t) < 0 and #2(t) > 0 with zo(t) —
z1(t) = (ul(t) —Ip7y)/(un). The function p(t, z) remains 0 for all ¢ € [0, 1]. In
this loading process we still have the same axial force F'(t) for all the different
solutions, namely F'(t) = agE min{~y/u,£(t)/lp}, so the system behaviour does
not reflect the nonuniqueness. However, upon unloading the system behaviour
will be completely different.

We illustrate more precisely the effects of nonuniqueness by considering
the system behaviour under the sequence of loading, unloading and reloading
for two extreme situations: Case 1, the homogeneous state, c(t,z) = ¢(t), and
Case 2, the c-inhomogeneous case of ¢(t,z) € {0,1}. To this end we extend
the loading program £(t) by adding a reloading step, i.e. £(t) = £paxmax{l —
|1 —t|,t —2/3}. The derived expressions for the axial force F;(t) in each case
are given below and the corresponding hysteresis loops are depicted in Fig. 8.

force /

oEYy/p T

OE(y—B)/p+

lay/pt [ ls(y/p+n)
elongation

Figure 8: Nonunique system behaviour of a homogeneous bar: (i) for homo-
geneous distribution of ¢(t) € [0,1] (solid bold line), (ii) for inhomogeneous
distribution of ¢, ¢(t,z) € {0,1} (dotted bold line)

Case 1: For the homogeneous distribution of ¢ we have the following evolution
of force Fy,

aogE min{l(t)/lg,v/p} tel0,1], (loading)
Fi(t) =< aoEmax{l(t)/lp —n/2,v/u— B/(2u)} te€[l,4/3], (unloading)
aoEmin{l(t)/lp — Ao, A1} t€[4/3,2], (reloading)
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where Ag =n/3—~/(3u)+B/(2u), Ar = (4y+2v+B+B(2y—3B)/v)/(6p).

Case 2: We consider the case that ¢(t,z) = 1 for x < 24(t) and c(t,z) = 0
else. Hence, only the position of zf(¢) has to be determined. Using the phase
transformation conditions we easily obtain

aogE min{l(t)/lg,v/p} t € 0,1], (loading)
Fy(t) =< acEmax{l(t)/ip —n/2,(y — B)/p} te€][l,4/3], (unloading)
aoEmin{l(t)/lp — Ag, v/} t€[4/3,2], (reloading)

where Ay = (3B +np —v)/(3p).

Small hardening versus small inhomogeneity

We now briefly mention the physically interesting case that the hardening
parameter w = L — B > 0 as well as the inhomogeneity of the bar, o/(z) are
small. To this end consider the following ansatz

L=B+w, a(z) = ag + wpa (z).

According to theorem 4.1 there is for each piecewise monotone loading curve
(t) a unique solution (e, ,(t, %), Cu,p(t, ), Cow,p(t,x)) which for w — 0 con-
verges, as shown in [85], to a well-defined limit (e, ,(¢, z), ¢ 5 (£, ), €04, (L, Z)).
This limit is in fact one of the solutions for the homogeneous problem without
hardening considered above. The interesting thing is, that it is the specific
solution which still has information on the relative size of the inhomogeneity
and the hardening which is expressed in the parameter p. We will omit here
the rather lengthy analytical derivations discussed in [85], and illustrate only
the final force-elongation diagram for the unloading step.

Relations in Fig. 9 were obtained by unloading with £(¢) = 8—t for ¢t € [4, 8]
from the state reached by loading with ¢(t) =4 —|4—t|, t € [0,4]. We remark
that the loading process is not dependent on the parameter p. For simplicity,
the following data were used

E=1Ilg=1,n=4, B=1,v=8, L=1+4w, a(z) =14+ wpz.
By po we denote a parameter that depends on both geometry and material of

the bar, pg = ap/(vlp) = 1/8. Let F(t) = Fi(t) + O(w) be an expansion of
the axial force.
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Figure 9: Force F' during unloading as the function of elongation /() = 8 —
t, t € [4,8], for various (scaled) inhomogeneity parameters p/pg
The system behaviour, shown in Fig. 9, strongly depends on p:

For t € [4,8] and p > 1/8 we have £(t) =8 — ¢

2481 /(p/2)2 +4p(t —4) fort € [4,17/4+1/(4p)],
F.(t) = 7/4 for t € [17/4 +1/(4p),25/4],
8§ —t for t > 25/4.

For ¢t € [4,8] and p < 1/8 we have £(t) =8 — ¢

6 —t, te4,2 —p,
F(t)=1q 2+ 85— 1/ (p/2)> +4p(t —6) + (1/2+4p)%, te€[3 —p, ¥+,
8 —t, t>2 +p.

We especially recall the two extreme cases of (i) hardening without in-
homogeneity (p — 0) and (ii) of large inhomogeneity and small hardening
(p = o0). In both cases we have two purely elastic regions close to ¢ = 0 and
¢ = 4. In between there is a flat part of the curve which has the level 15/8
in case (i) and the level 7/4 in case (ii), see Fig. 9. Thus, the case (ii) yields
weaker system behaviour. Let us observe that the curve (F,(t),£(t)) does not
behave monotonously in p. For analysis of more complex loading cycles we
will apply a numerical algorithm to be described next.
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4.1.3 Numerical results

First we formulate an incremental problem for system (4.13) and describe an
iterative algorithm for its solution. Then we present a numerical study of the
dependence of internal hysteresis loops on the relative size of hardening and
inhomogeneity.

Monotone path rule

We discretize the problem in time by selecting on the time interval [0, 7] nodal
points t,, n = 1,..., N, so a typical time-step t,_1 = t, is defined on the
subinterval [t,,_1,t,]. We apply the implicit time integration scheme in which
the evolution of the hysteretic system (4.13) is treated as piecewise monotone.
This means that in one time step the path of a material point evolves according
to the following monotone path rule.

Monotone path rule for time steps (MPR)

In each time-step t, 1 = ¢, the deformation process in a mate-
rial point z is either pure loading [ € > 0(6 > 0) | or pure unloading
[6<0(6<0)].

Figure 10: (a) An allowed path and, (b) an excluded path in one time-step
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Thus, using the MPR we admit to the paths as shown, for example, in Fig.
10a, but exclude loops around the diagonal X = 0 as illustrated in Fig. 10b,
within one time-step, at the material point at a fixed temperature. Of course,
in different material points € {2 we may have loading or unloading. In our
1D case one may expect that in each z € € the monotonicity intervals of [0, 7]
coincide with those of the loading function £(¢) (the latter are determined by
the points ¢,, at which the rate of £(¢) changes sign).

Numerical algorithm

The numerical algorithm is developed for a slightly more general problem
including a volume forcing f (¢, z) along the bar, so now the elastic equilibrium
equation reads

% (a(x)E(e(t,x) — c(t,z)n)) = f(t,x) for z € (0,1p).

Due to this generalization the monotonicity argument employed in the case
f(t,z) = 0 is no longer valued. We may have loading and unloading at the
same time instant but at different material points. The ability to handle
such circumstances is necessary when considering higher-dimensional prob-
lems, since then one cannot guarantee simultaneous loading or unloading even
when no volume forces are present.

In the implicit time integration scheme we determine the state of the pro-
cess Sy = (un, cn,pn) at time level ¢, for the given values of driving quantities
l, = L(ty) and fp, = f(tn,-) at this moment, and previous state S,_;. By
virtue of the MPR, the quantities of interest o,c¢ and p can be written as
functions of ¢ and the old values of ¢,_1,p,—1 using the function X, C and P
defined in (4.15) - (4.18),

Op = z](571’ Cn—lacn—l)a Cp = C(gnacn—lapn—l)a Pn = P(gnacn—lapn—l)-
(4.19)

The hysteretic evolution of the binary alloy can now be approximated by
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the following time-incremental problem

Given S, _1 = (up—1,¢pn—1,pn—1), find Sy, = (up,cy, pn) from

x
Up(z) = / en(y) dy and the following relations:
0

lp

a(z) % (en(2), cn1(2), pn—1(2)) = Fn — [ fuly)dy, = €[0,15],

x

lp
/ en(z)dz = £,
0

with
cn(x) = C(gn (ZE), Cn—1 («'L')apn—l (.’L‘)),

() = P(en (), cn-1(x), pp-1(z))-

(4.20

For L > B we obtain a unique solution of the incremental problem by
determining the unknown axial force F}, such that the length condition holds.
The existence and uniqueness follows from the fact that X is strictly monotone
in £, namely piecewise linear with slopes either E > 0 or E > 0.

The first two equations in (4.20) have to be solved numerically. This can
be done as follows. The function (o, ¢, p) as the inverse of 0 = (e, ¢, p) is
known explicitly (provided L — B > 0). Hence it remains to solve

I
by = Lo(Fy) Y /0 E(0n(2), cno1 (2), pus (2)) dz
lp

with on(x) = (F, — fn(y)dy)/a(x).

x

(4.21)

To solve this nonlinear scalar problem we introduce a node spacing z; =
ih, i = 0,1,2,..., M, with h = Ig/M. The integrals are calculated by a
trapezoidal rule and the nonlinear scalar function is solved using bisection
with a relative error in ¢, smaller than 10~'2. The quantities &, ¢, and py,
are obtained on the nodes z; via £ = X~!, C and P of (4.19).

The convergence of this algorithm was checked numerically for many test
examples. The results for an inhomogeneous bar subjected to a body force
f(z,t) and a displacement loading ¢(t) are included in [85]. Here we would
like to restrict ourselves to the numerical analysis of hysteretic behaviour in a
number of loading/unloading cycles.
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Numerical study of internal loops

The analysis here complements the analytical results obtained in the pre-
vious section. Our goal here is to test the influence of the measure of in-
homogeneity p on the system behaviour. We have analyzed the test exam-
ples as the displacement-driven loading process of the bar of unit length, say
Ip = 1.00m. The considered bar possesses a linearly varying cross-sectional
area a(z) = 0.9999 + 0.0002|z|, z € (—0.5,0.5). The hardening modulus L
is expressed in terms of the parameter p, i.e. L = B + 0.0002/p. We have
used the data provided in [59]. After some calculations we obtain the fol-
lowing values: temperature 8 = 292.6 K, yielding stress oy = 64.227 MPa,
recovery stress op = 45.277 MPa, elasticity modulus £ = 12 300.0 MPa, ma-
terial constant B = 1.30 MPa, phase transition strain n = 0.0686, density
of the alloy pgens = 7750.0 kg/m3, difference in energies Aw = 3.756 J/m?3,
v = 4.406 MPa, p = 843.78 MPa. The following initial distribution of the
volume fraction, ¢(0,z) = 0, and the discrete memory, p(0,x) = 1, are taken.

Example 1. First, we subject the bar to the loading program /() =
0.07308t 4+ 0.019538 sin(5.712¢), which has a local maximum at ¢ = 0.40 and a
local minimum at ¢ = 0.70: £(0.4) = 0.044 and ¢(0.7) = 0.03639. This loading
program induces one internal loop, whereas the loading function used in the
next example produces 3 internal loops, cf. Fig. 13b. The system behaviour
is displayed in Fig. 11 for some representative values of the inhomogeneity
parameter p scaled against the characteristic value py = ag/(vlg). By a dot-
ted line the diagonal and the recovery segment for the ideal pseudoelastic
case L = B = 1.30 are marked. As established in Section 4.1.2, the inter-
nal loops are realized if the inhomogeneity of the process is sufficiently small,
p < po/200, which results in uniform distributions of volume fraction ¢, see
Fig. 12 for p = po/500. Otherwise we have in terms of strain a localization
phenomenon. It should be stressed that the localization effect, even if not
present after a first loading/unloading cycle, it may occur later in the course
of the loading/unloading sequences.

Example 2. To further check the impact of some inhomogeneity induced by
previous loading/unloading loops we have subjected the bar to the loading
history shown in Fig. 13b. We denote by L1,L.2,1.3 and U1,U2,U3 the turning
points of the sequential loading and unloading steps. The elongation program
induces three internal loops with the same unloading amplitude of 0.6%. In
Fig. 13 presented are the results which illustrate three types of the system
behaviour. First, when the inhomogeneity is high (or hardening is small)
there is no internal loop, in this example for p = pg/2 = 0.22694. Then for
p = po/500 even although the first loading/unloading cycle is accompanied by
a regular hysteresis internal loop, the inhomogeneous state of strains which is
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Figure 11: Example 1. Force F' at the end of bar as a function of elongation
¢, for various (scaled) inhomogeneity parameter p/pg
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Figure 12: Example 1. Distribution of volume fraction c¢(z) along the bar at
the end of loading (a) and unloading (b), for various (scaled) inhomogeneity

parameter p/pg
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induced by that cycle disturbs subsequently the regular response of the system,
compare Figs. 13a and 11c. Notice the sharp knicks in Fig. 14a and b. Finally,
some accumulation of the deformation history can also be observed in the case
of the very small inhomogeneity p = po/2000 corresponding to the hardening
modulus L = 1.68B = 2.1813, see Fig. 14c.
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Figure 13: Example 2. (a) Force F' at the end of bar as a function of elongation
£(t) shown in (b), for various (scaled) inhomogeneity parameter: p/pg = 1
(thin line), p/po = 1/500 (medium line), p/pg = 1/2000 (thick line)
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Figure 14: Example 2. Distribution of volume fraction c¢(z) along the bar at
the end of the loading and unloading steps shown in Fig. 13b, for (a) p/po = 1,
(b) p/po = 1/500, (c) p/po = 1/2000
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4.1.4 The non-isothermal problem

As evidenced in experimental tests on shape memory alloys, during the phase
transformation process (latent) heat is generated (in case of forward PT) or
absorbed (reverse PT), e.g. [166, 160, 187]. Furthermore, the experiments
carried out at various temperatures of bath, 6y, show that the transformation
stress depends on the temperature, and that this dependence may be assumed
linear as a first approximation. MULLER and his co-workers, e.g. [122] re-
vealed that the area of external (limit) hysteresis loops in the force-elongation
diagram remains constant. In simple terms, we may say that the stress-strain
diagram moves up when the temperature is increasing, or moves down upon
a decrease in the temperature. Note that the place where the heat is gener-
ated or absorbed is not known in advance, because the location of the phase
transformation front is an unknown of the problem. Similar in some aspects
to the present problem, the one-dimensional IBVP for phase transformations
with temperature coupling has been considered in [130, 34, 17, 94, 197].

The heat equation for the phase transformation problem we have derived
from the first law of thermodynamics, cf. e.g. [59, 151], by making use of
Fourier’s law of heat diffusion

. 00

q= _ka_m (4.22)
where the proportionality factor k is known as the thermal conductivity, and
Newton’s law of cooling

i = Ben|0" — 0(z, )] A, (4.23)

which incorporates the heat transfer from the sides of the bar, with S, being
the coefficient of heat transfer, ¢ the temperature of the bath (environment)
and A; is the area of the bar’s surface per unit length. Finally, we arrive at
the coupled heat equation of the form

d(e,¢)é 4+ CO — kb pp + ELobE — Ben[0°" — O(z, )] Ay = 0, (4.24)

where
d(e,c) = B/2 4 (e — €}) — En(e + 58°) + (Bn* — B)c

and C = pC, with p and C, being the density and specific heat of the alloy,
respectively, 3y is the coefficient of thermal expansion at reference temperature
6°. Tn what follows we restrict ourselves to a reduced form of (4.24) in which
the piezoelectric effect and the heat transfer through the sides of the bar are
neglected,

d(e,c)é + CO — kb 5, = 0. (4.25)
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A typical time step for the non-isothermal evolution of the two-phase bar
can be defined as follows.

Given S,_1 = (up—1,¢n—1,Pn—1,0n—1), find S, = (up, cn, pp,0y) from

x
un(x) = / en(y) dy and the following conditions:
0

I
a(z) X (en(x), 00 (2), cn_1(x), pp_1(x)) = F, — fn(y)dy, = €(0,lp),

x

cn(z) —cepo1(z ~0,(z) — 0, 1(x 20,,(z
d(en—¢(x), cpg(z)) ( )Atn i )+00 ( )Afn 1 )—kdgxg ) =0,
/lB en(z) dz = £y,

0
with
cn(x) = Clen(x), On (), cn1(z), pn1(x)),
pn(x) = P(sn(x),Hn(x),cnfl(x),pn,l(w) :
(4.26)

where 0 < ¢ <1 and At,, = t, — t,_1. Approximating the operator d?/dz?
by a second centered difference, we finally integrate the nonisothermal phase
transformation problem by a backward in time and centered in space scheme.

The functions ¥, C and P are defined as in (4.15), (4.17) and (4.18), but
now depend also on the changing temperature 6 through the characteristic
strains (4.16) and - which is a function of 0, i.e. v = B/2—(eJ—e¥)—(s5—59)6.
The length of the bar is [ = 0.015 m, and the following initial and boundary
conditions were considered:

0(x,0) =6y, c(z,0)=0, wu(z,0)=0,
0(0,t) = 0(lg,t) = 0°, u(0,t) =0, wu(lp,t)=4L().

The temperature at the ends of the bar was kept equal to §° = 273.00 K, while
the bar was stretched by a bilinear loading £(¢) with various speeds which was
constant in each run, [{(¢)| = constant. The elongation is at first increasing
for t < 0.925 seconds and then decreasing. Following [34, 17] we have used
B = 0.60 MPa, L = 1.001B, 5 = 0.06, C' = 3.4265 MPa/K, k = 376.0 W/mK,
p = 8900.0 kg/m?, E = 10000.0 MPa.
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For solving the nonisothermal problem we have used two numerical
schemes. In the first case, the time-step ¢, 1 = %, is split in a strain-
step and a temperature step, so the problem is treated as semi-coupled. At
instant t,, for given state S,_1 = (up—1,¢n—1,Pn—1,0n—1) and frozen temper-
ature § = 6, 1, first the conditions (4.26); 3 are satisfied, and then for the
determined (uy, ¢y, py) the temperature is updated by solving the heat equa-
tion (4.26)2. In the second case, the fully coupled strain-temperature steps are
calculated, where we require that the state S, at a material point must satisfy
all the strain-stress-temperature relations (4.26) at the current time ¢,. As
the stop-criterion we have checked the relative error in elongation and relative
changes in temperature and other quantities. Obviously, the convergence rate
of the fully coupled scheme is lower.

The scaled force-elongation diagram, (F'/Ay) — (4(t)/ls), displayed in Fig.
15, was obtained with the two schemes at the elongation rate of 6.67 %/s.
Fig. 16 illustrates the dependence of the force-elongation loops on the speed
of elongation. The obtained results are in agreement with the experimental
observations [100], and show that the influence of temperature on the phase
transformation process in the bar is important.

F/A_o (MPa)
70+
60+ —_—
.| -
40}
301}
1.33 >.66 4.00 5.33 6.67

elongation (20)

Figure 15: Scaled force F'/Aj at the end of the bar as a function of (scaled)
elongation £/lp. Thin line: isothermal case, medium line: semi-coupled strain-
temperature steps, thick line: fully coupled strain-temperature steps

The evolution of volume fraction ¢ and temperature 6 along the bar can be
seen by comparing their distribution at the selected states A,...,C’. Observe
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Figure 16: Scaled force F//Ay vs. scaled elongation ¢/Ip, obtained with the
fully coupled strain-temperature scheme, for various elongation rates. Thin
line isothermal case, medium line — 0.667 %/s, thick line — 6.67 %/s

that although each pair of states (A,A’), (B,B’), and (C,C’) is associated with
the same scaled elongation (overall strain), the corresponding distribution of ¢
and 0 are quite different at A and A’, for example. As Fig. 17 shows, the phase
transformation starts at the ends of the bar, where the constant temperature
condition is imposed. With the semi-coupled scheme we have observed at some
places the ”algorithmic” unloading for positive elongation increments of the
bar’s ends, as reported in [17] which have, however, not appeared with the
fully coupled scheme. Hence, the characteristic needles were not observed.

Summing up the obtained results, we want to recall two points. The influ-
ence of temperature on the stress-assisted phase transformation process (i) is
the more pronounced the greater the deformation speed and (ii) it makes the
corresponding boundary value problem inhomogeneous. Expressed in other
words, point (i) says: the thermomechanical coupling in the thermoelastic
phase transformation process results in the temperature-induced rate depen-
dence on the level of system behaviour. The observed widening of the stress
hysteresis under increasing strain rates is in agreement with the experimental
results of SCHROEDER & WAYMAN [159] and LEXCELLENT, LicHT & GO0O
[100].
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Figure 17: Selected states A,B,... A’ on the force-elongation diagram, (a).
Distribution of phase fraction, (b), and temperature, (c), along the bar at the
selected states. (The fully coupled strain-temperature scheme)
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4.1.5 On the description of internal hysteresis loops

The thermomechanical model under consideration accounts for the hystere-
sis effects of friction type by making use of the threshold functions k™ and
£~ in the PTC (4.10). The system (4.10) supplemented with the equations
of (static) equilibrium govern completely the evolution of the phase mixture.
Nevertheless, the modelling of the internal loops appears to be a delicate mat-
ter. In the hysteretic behaviour shown in Fig. 6, it is convenient to introduce
a (discrete) memory variable p whose evolution law may be formulated in the
form

p(t7 :E, 0) = 07 if X(t7 :E, 0) # 07
{ (4.27)

pte, z,0) = c(ty, x,0), if X(ty,z,0) =0.

Thus, as defined above the function p suffers jumps at times ¢t = ¢, at which
the driving force X equals zero. However, whenever a loading path slightly
crosses the diagonal and then the direction of the response is reversed we have
unstable behaviour: compare the paths, at a single material point, in Figs.
18a and 18b, where the deformation process depends discountinuously on the
loading history.

The critical point here is the reloading-after-elastic-unloading (and re-
unloading-after-elastic-loading) segment in the stress-strain diagram on which,
in fact, there is no total consensus among the researches. This situation is il-
lustrated in Fig. 19 where reloading from the state C is the passive, elastic
process (¢ = 0) in direction CB according to MULLER et al. [122, 59], whereas
by RANIECKI et al. [151] it is the active austenite-martensite phase transfor-
mation flow (¢ > 0) in direction CE.

Accounting for the type of behaviour due to Raniecki we can formally
modify the evolution law for the memory variable p to the following form,

plt) = e(t) ~ T X(1) (425)
where X is the driving force defined in (4.7). Hence for the states on the diag-
onal — p equals ¢, on the segments of pseudoelastic flow — p remains constant,
and during passive processes — p continuously approaches c.

Observe that after the change in the evolution law for p, the previous
formulae (4.15) and (4.17) for &+ and C, together with the formulation of the
corresponding incremental boundary value problem (4.20) are still in force.
Only for the function P previously defined in (4.18) we have now the expression

P(e, c) :(1—B/L+E772/L)c—%5+%(Aw+3/2). (4.29)
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Figure 18: Illustration of a discontinuous response of the thermomechanical
model

strain

Figure 19: The different reloading responses from the state C: (i) in direction
C-B by Miiller, (ii) in direction C-E by Raniecki



90 The model problem of phase transformation

Applying this new evolution law we have re-calculated Example 2 of Section
4.1.3 with the three loops shown in Fig. 13. The results we obtained this time,
cf. Fig. 20, indicate that also in the present case the system behaviour depends
upon the inhomogeneity parameter.

F/Aoc (MPa)

3 4
elongation (20)

Figure 20: Example 2 of Sec. 4.1.3 recalculated with the evolution law (4.29)
for the memory variable p, to be compared with the scaled force-elongation
(F'/Ap) — (¢(t)/lB) shown in Fig. 13b, for various (scaled) inhomogeneity pa-
rameter: p/py = 1 (thin line), p/po = 1/500 (medium line), p/po = 1/2000
(thick line)

We may conclude that it is not the definition (4.27) of the variable p
which is responsible for the discontinuities shown in Figs. 12 and 14, which
develop in the inhomogeneous system. The reason seems to be the hysteretic
behaviour shown in Fig. 6 itself. It goes without saying that our modelling
of the very complex hysteresis loops observed in experiments by means of the
variable p should be understood as a first approximation of accounting for
this phenomenon, which is based rather on macroscopic observations. How
a memory variable evolves in shape memory alloys under cyclic loading is,
however, a difficult and subtle question which requires further research, for
related discussions see [137, 190, 180, 5, 11]. But, it should be remarked
that the use of p is not central to the approach we develop in this work.
In particular, we may stipulate that the phase transformation flow will take
place only along the interval AB (forward PT with p = 0) and the interval DE
(reverse PT with p = 1). Then, the thresholds assigned in (4.11) become

kT =kT(c) = Le, k =k (¢)=L(c—1). (4.30)
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4.2 The two-phase system

In this section we develop a variational inequality approach to the hysteretic
behaviour of a two-phase thermoelastic material undergoing stress-induced
coherent martensitic PT. We shall build on the thermomechanical concepts
introduced in the context of the one-dimensional model of Section 4.1. The
thermomechanical model applied here was developed by many workers who
contributed to its different aspects and generalizations, MULLER et al. [59],
RANIECKI et al. [151, 152, 148, 150], LEVITAS et al. [97, 99]. The model is
based on quadratic free energies for the parent phase, W, and the product
phase, Wy. As before, the free energy of the mixture W (per unit volume) is
a weighted sum of the component energies and the 'mixing’ energy

W = (1—¢) Wi + ¢ Wy + Whnix (4.31)

wherein ¢ € [0,1] is the volume fraction of the martensite phase. The final
form of (4.31) as given in (4.33) resembles the expression rigorously derived
in a mathematical way by KOHN [75] who uses a relaxation procedure at fixed
volume fractions. The directly related work in metallurgy is by KHACHATU-
RYAN [69].

Our goal here is to formulate in a unifying manner the corresponding rate
boundary value problem for a three dimensional body made from a two-phase
material exhibiting the hysteretic behaviour shown in Fig. 6. The proposed
formulation takes the form of a variational inequality of the first kind, which
is defined on the product set V x K where V is the space of kinematically
admissible (finite increments of) displacements, u € V', and K is the convex
set of admissible volume fractions, ¢ € K. Under appropriate hypotheses, the
existence and uniqueness of a solution to the incremental-in-time problem is
proved. The variational inequality assures the satisfaction in weak form of
both the equilibrium conditions and the phase transformation rules. Further-
more, the domain (in a special case: boundary) between the region where the
material is the pure austenite phase and that where it is in the pure martensite
state, which is the additional unknown of the problem, is determined auto-
matically as a sort of ”by-product” by solving the variational inequality. The
rate boundary value problem is integrated in time by an implicit scheme and
for its space discretization the finite element method is applied. Finally, the
governing variational inequality is solved as a sequence of linear complemen-
tarity problems. To this end, we have developed two numerical algorithms:
one based on the classical idea of pivoting, whereas the other operates in
two steps by combining the Symmetric Successive Overrelaxation with Pro-
jection method (SSORP) and the Preconditioned Conjugate Gradient method
(PCG). We have verified the proposed formulation and algorithms by simulat-
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ing the uniaxial tension test on shape-memory strips. The strips are initially
in an austenitic phase which under prescribed end elongation transforms in
a martensitic phase and subsequently, under releasing, returns to the initial
state. The numerical results reveal the influence of the phase transforma-
tion strain and boundary conditions on the propagation of the transformation
front and the deformation mode of the specimen. They are in good qualitative
agreement with the available experimental observations.

4.2.1 Free energy and thermomechanical relations

The type of hysteretic behaviour we wish to describe is schematically illus-
trated in Fig. 6. We consider the quasi-static isothermal evolution of a two-
phase thermoelastic solid which undergoes a martensitic transformation. The
problem is treated in the context of small deformations, under the assump-
tion that the material prefers two strain states: the parent phase (austenite),
and the product phase (martensite). It may be noted that a two-component
model for martensitic phase transformations is a conceptual simplification as
the martensite phase may, in general, appear in many variants, e.g. six variants
of martensite in a cubic to orthorombic transformation, ¢f. BHATTACHARYA
[9]. We consider the multi-phase problem in the next section 4.3. In its nat-
ural state at a temperature 6° (6 > A?c) the body occupies an open region
Q c R* with d = 1,2, 3. In a material point (particle) & € Q we postulate the
Helmholtz free energy W;, ¢ = 1,2 in the form

Wi(E,0) = 5 (E — D;) - A; [E — D;] + wi(0),

1
5
where, for simplicity, the 4th order tensors of elasticity A; are assumed to be
the same for each phase, Ay = Ay = A. By E = E(u) = 1(Vu + (Vu)T)
we denote the strain tensor, whereas D; is the transformation strain of ith
phase (structure domain, [69]), and a dot - designates the scalar product of
tensors (and vectors). The phase transformation strains D, are a function
of the crystal structures of the parent and product phases and so they may
be assumed constant during the deformation process. Taking the austenite
lattice as the reference state, we may set D; = 0 and the transformation
strain Dy = D. The function w;(f) depends on temperature 6, treated here
as a parameter, and w;(6) is defined in (4.3). The free energy function is a
two-well functional which is piecewise quadratic

W (E) = min {W;(E), Wo(E)} . (4.32)

But, it is known that if the free energy function of the elastic material is not
quasiconvex [6, 7, 18, 113], it is possible to find a boundary value problem for
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which the energy functional has no minimizer. This mathematical property
of the phase transformation problem is connected with the ”proclivity” of
the material to form a finer and finer microstructure, when minimizing the
elastic energy. Quasiconvexification of the phase transformation problem is a
remedy used for its regularization which leads to an energetically equivalent
solution, that is still of great importance. Denoting by ¢ the volume fraction
of martensite we can define the free energy of the mixture by

W(E,c) = % (E—cD)-A[E — ¢D]+ ((1— c)mr + cas) + %Bc(l — o). (4.33)

Observe that the function W defined in (4.33) corresponds to the relaxation at
fixed volume fractions Q.W (FE) derived by KOHN, see equation (3.11) in [75].
We recall that for the function W specified in (4.32) its relaxation Q. W (E)
at fixed ¢ € [0, 1] is defined as, cf. [75], (with |U| = measU)

QW(E) =inf _int o [ 1)W1 (B+C(0)+xWa(B+Cle)] (134
X elov=0 |U| Ju

where C(p) = 3(Vep + (Vo)1) and ¥, being the characteristic function equal
to 0 or 1, describes a partition of U into two phases, with the constraint that
the volume fraction of the second phase equals c,

7 ),
—_— = C.
U] J X

By ¢ we denote the test displacements with vanishing values at the boundary
OU of U. The minimization in (4.34) is carried out over the physical domain
U C R%, with respect to the displacements ¢ and the partitions of U into dis-
tinct phases described by distribution of xy. The set U may be related to the
"representative volume element” in the theory of composites. However, unlike
in an ordinary two-phase composite where inclusions exist at the outset and
their placement and concentration are given, cf. [127], here the martensite
inclusions nucleate in the course of the deformation loading process, so the
volume fractions of constituent phases (variants) are not given a priori, but
constitute the additional unknowns of the problem. (Homogenization tech-
niques in analysis of periodic media are used in [182].) In our context here, we
only remark that the minimization in (4.34) does not depend upon the domain
U. This is a more general result of the theory on quasiconvexification, see [75]
and also [3, 188]. In deriving the expression for Q. W (E), Kohn [75] has used
the relaxation via Fourier analysis with ¢ being periodic functions. The relax-
ation of W, denoted by QW , can finally be determined by the minimization of
QW (E) with respect to ¢ over the interval [0, 1]; for a one-dimensional case
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it is shown schematically in Fig. 21. The most useful property of QW is that
it has a minimizer with the corresponding minimal value equal to that of W
as defined in (4.32). In this work our point of departure is the function W by
(4.33) which corresponds to Kohn’s relaxed energy at fixed volume fractions,
Q.W(E). We wish to stress the fundamental role which is played here by the
term Whix. In the case of the free energy W of (4.33) Whix depends on the
material parameter B, but more general expressions are known in the litera-
ture, see [96, 148]. According to [59] the value of B may be related to the area
of hysteresis in the elongation-force diagram, another expression for B is given
in [75], cf. also [158]. In the case B = 0, the phase transformation proceeds at
a constant stress (the Maxwell line) determined by the ’double tangent con-
struction’, what in mathematical terms amounts to the convexification of the
energy W assigned in (4.32) and is illustrated by the dotted bold line in Fig.
21.

In order to take into account the dissipation and hysteresis which are char-
acteristics of the phase transformation behaviour illustrated in Fig. 6, we min-
imize the free energy W, defined in (4.33), with respect to ¢ under the require-
ments imposed by the second principle of thermodynamics, supplemented with
the postulate of realizability [97].

D

Figure 21: Quasiconvexified energy function QW for a two-phase system with
parabolic energies Wi and Wy, and transformation strains Dy = 0, Do = D.
The dotted bold line corresponds to the convexification of W
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Requirement of the second law of thermodynamics,
D=T-E— (W +s) >0, (4.35)

leads finally to the inequality, cf. (4.5),

D=X¢>0 (4.36)
where the driving force of phase transformation, X = —OW /e, is
1
X:T-D—(w2—w1)—§B(1—2c). (4.37)

The condition X = 0 defines a plane in the space of stresses T, parameter-
ized by the volume fraction c. In the one-dimensional case X = 0 and ¢ € [0, 1]
describe the diagonal AD in Fig. 6. When related to the one-dimensional sit-
uation, the driving force X = X(T,c¢) is positive in the triangle ADB and
negative in the triangle ADE of Fig. 6. We recall that the equilibrium states
on the diagonal AD are unstable and, according to (4.36), are accompanied
by no dissipation. Thus, accounting for the dissipation and consequently for
hysteresis effects we assume that phase transformation may take place only if
its driving force X reaches some threshold values k™ or £~ defined in (4.11),
with possible modifications discussed in section 4.1.5. For completeness we
recall here the phase transformation conditions (4.10),

if X(c) = kT (c) then ¢>0
if X(c) =k (c) then ¢<0 (4.38)

if Kk (c)<X(c)<kT(c) then ¢=0

The equilibrium equations for the stress tensor
T = OW JOE = A[E — c¢D] (4.39)

take the form
div A[E(u) —cD]+ f = 0. (4.40)

where f is a body force per unit volume. For the rate boundary value problem
considered later on, equations (4.40) should be supplemented by appropriate
initial and boundary conditions. We assume that the latter are regular, i.e.
they satisfy all the relations defining the problem.
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4.2.2 Variational inequality formulation

First we reformulate the phase transformation conditions (4.38) in a form suit-
able later for the numerical solution of associated boundary value problems.
To this end, we define the phase transformation functions

FH(T,c,p) =kt — X >0, F (T,c,p) =X -k~ >0 (4.41)

which correspond to the forward and the reverse phase transformation and ¢+
and ¢~ are the positive and the negative part of the rate of volume fraction,
so that ¢ = ¢t — ¢7, defined by

¢t = max{¢, 0} > 0, ¢ =max{—¢0} > 0. (4.42)

Under these definitions we have the following result, compare the equiva-
lence lemma 2.3.

Lemma 4.2. The phase transformation rules (4.38) are equivalent to the rate
variational inequality: for c € [0, 1],

Fre) - (yr —¢)+F7(e)-(y- —¢7) 20 forall yy,y >0.  (4.43)

Proof. We prove the assertion in the special case that ¢ € (0,1). First,
assume the ’if’ part of (4.38)3 so that FF™ > 0 and F~ > 0, then (4.43) implies
that ¢ = ¢~ = 0, otherwise the existence of a ¢© = d > 0 would lead to
the contradiction: F*t(c) - (y4 —d) < 0 for all y; < d. Further, if one of
the phase transformation functions is equal to zero, say, F™ = 0, i.e. the "if’
part of (4.38)1, then ¢t > 0 satisfies (4.43) (a degenerated case ¢* = 0 is also
covered). Note that by (4.41) FT = F~ = 0 is possible only for the states
on the diagonal AD in Fig. 6 and if the thresholds are defined as in (4.11);
such a coincidence is not possible for thresholds assigned by (4.30). Finally,
by satisfying inequality (4.43) on the positive cone R, with ¢*,¢~ € Ry, we
enforce the conditions (4.41). This completes the proof. 0

Remark 1. The case ¢ = 0 or ¢ = 1 leads to the expression for X which
includes the subdifferential of the indicator function of interval [0, 1], 9x/o 1] (¢)-

Formally, we may supplement the formula for W,

W (B, — % (E —cD) - A[E — D]+ (1 — ¢ + cws) + %Bc(l _ o)

+x[0,11(¢)- (4.44)
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In the light of the definition of the indicator function x[o ], cf. (2.4), and its
subdifferential,

(—o0, 0], c=0,
Ix[o,11(c) = {0}, c € (0,1), (4.45)
[0, +00), c=1,

we have the following expression for the driving force,
1
X:T-D—Aw—iB(l—%)—r(c), (4.46)

where the number r(c), 7(c) € dxjo11(c), may be interpreted as a reaction to
violation of the constraint that ¢ € [0,1] (Lagrange’s multiplier).

With X defined by the extended formula (4.46) the nonnegativness condi-
tions (4.41) are now satisfied also on the boundary of [0,1], i.e. ¢ =0, or ¢ =1,
for any values of stress T and variable p. Normally, the constraint X[U,l](C) is
not included in an expression for free energy, with the exception of FREMOND
[38]. In our further considerations the admissible changes of ¢ are controlled
by the set of constraints K, cf. (4.48), which in terms of the numerical LCP
algorithm (4.59), to be defined in section 4.2.4, lead to two vectors !, 0. [

Inequality (4.43) implicitly defines the evolution law of ¢, thereby the kinet-
ics of the strain induced by the phase transformation. Usually, the evolution
law for the volume fraction variable is written in the form of an equation for
the active phase transformation process which is the pivotal concern in the
metalurgical literature. However, from the standpoint of computational me-
chanics one of the main difficulties lies in the determination of the domain in
a body where the forward and reverse phase transformations do take place,
i.e. where the evolution law(s) of ¢ with ¢ # 0 is in force, and the domain
where the response is elastic and a different constitutive law with ¢ = 0 holds.
The variational inequality encompasses both the ”active” and the ”passive”
evolution of ¢, playing the role of a switch. It may be remarked that the above
formulation of the phase transformation criteria is similar to that of the load-
ing/unloading conditions in the flow theory of plasticity [89]. Yet, one of the
main differences is due to the constraint ¢ € [0,1] and that imposed on the
plastic multiplier A which is bounded only from below and whose rate must
be non-negative, i.e. A > 0, with A>0.

From the computational reasons, it is natural to express the functions
(4.41) in terms of displacements through the strain tensor. This leads to the
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new phase transformation functions

Gt (E,c,p) = —-D-A[E]+(D-A[D]—B)c+£"(¢,p) + Aw + B/2
G (E,c,p) = D-A[E]—(D-A[D]—B)c— £k (¢,p) —Aw — B/2
(4.47)

The discussed above formulation constitutes a natural advantageous basis
for the numerical treatment of the problem. Toward this end, the finite dimen-
sional counterpart of the variational inequality (4.43) in terms of the phase
transformation functions (4.47) is obtained by the finite element method, and
its evolution in time is solved as a sequence of linear complementarity prob-
lems.

Weak formulation

For boundary value problems of practical significance it is necessary to solve
the evolution problem (4.43) in a weak form with respect to the space variable,
and incrementally in time. To this end, the relations (4.47) will be expressed
in displacements through the strain tensor and imposed to be valid for the
body 2 as a whole. Doing this, from (4.36) we arrive at a reduced form of the
global Clausius-Duhem inequality [50]. We apply the implicit time integration
scheme, imposing the phase transformation conditions (4.47) and the elastic
equilibrium equations (4.40) at selected times ¢, € [0,T], with n = 1,2,...,
and T' < co. This amounts to treating the evolution problem as the piecewise
monotone one. In terms of the monotone path rule formulated in section
4.1.3, the decisive quantity is now the rate T - D instead of the rate of stress
¢ (scalar) only.

Using the notations u, = u(-,t,), ¢, = c(-, t,) for the displacement vec-
tor and the volume fraction at time ¢ = ¢, and the symbol A for finite
increments, we define

Au, =u, — Uy

Ac, = ¢y, —Ccp1

Further, we split the function Ae¢, into its positive and negative part, cf.
(4.42), obtaining the decomposition

Ac, = Ac — Ac,, .

Let V(t,) designate the set of kinematically admissible (increments of)
displacements of the body Q at time ¢ = %,

V(ty) = {v € H'(Q,RY)| v(z) = w(x, tn) for ae. € ru}



Variational inequality formulation 99

where H'(Q,R?) is a usual Hilbert space of vector-valued functions defined
on (), i.e. the set of function which together with their first derivatives are
square-integrable. By I';, we denote a part of the boundary I' of region 2
where displacements w are prescribed (at time ¢,). The sets K (c,—1) and
K (c;—1) that impose constraints on the finite, positive Ac;} and negative
Ac,, parts of increments of volume fraction take the form

K(z) = {wel*(Q): 0<z4+w<1,2€Z}

Ki(z) = {wel?’Q): w>0,z+w<lz€Z}

K (z) = {wel*(Q: w>0,z—w>0,z€ 7} (4.48)
Z = {2€L*Q): 0<2<1}

where L?(€) is the space of square-integrable functions.

Before giving a weak formulation of the boundary value problem we define
the following bilinear and linear forms which correspond to relations (4.47)
and (4.40),

alw,v) = /QA[V'w]-V'vdaz
g(w,v) = /QwA[D]-Vvda: (4.49)

h(w,v) = /Q(D-A[D]—i-L—B)wfudaz

fan—1(v) = / Af, -vdx + (terms onI'), 1
Q

bE (cnoryw) = / (B/2 + (w5 — 1) + L{en_1 — po1)]w da (4.50)
Q

:Fg(wa unfl) + h(cnfla w)

With these notations we can define a typical time step t,_1 = t, of
the incremental boundary value problem for the phase transformation process
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under consideration as the variational inequality.

Find (Au,, Ac,) € V(t,) X K(cp—1) such that

a(Aup,v) — g(Acp,v) = fon-1(v)
Fg(ze — Ach, Auy) £ h(Acy, 2+ — Ach) > :befl(cn,l,zi — Ach)

for all (v,24) € V(tn) X Ki(cn—1).

(4.51
Having solved (4.51) for increments Au,, and Ac,, we can easily update the
discrete memory p,_1 to p, at the current time ¢ = ¢,, by controlling the values
of the driving force X, cf. the function P of (4.18) and discussion in Section
4.1.5 for the 1D case.

The first equation of the system (4.51) is a weak form of the equilibrium
condition (4.40), whilst (4.51)2 represents two variational inequalities which
are a weak form of the phase transformation rules (4.38) in virtue of the equiv-
alence (4.43). The system (4.51) can conveniently be discretized in space by
the finite element method and is solved finally as a standard form of the linear
complementarity problem, after some rearrangements due to the restricted
variations of the variables Ac,’, Ac, and the fact that changes Awu, of the
displacement vector are not restricted in sign.

4.2.3 Existence and uniqueness

In this section we follow the line of reasoning presented in Section 3.1.3. Al-
though both problems (3.44) and (4.51) have a lot in common, they are differ-
ent as far as the constraint set K is concerned. In (3.44), K is a positive cone
with vertex at the origin in L?(f2), whereas in (4.51) the corresponding set K
defined in (4.48); is bounded. We shall show that a bilinear form A associated
with the variational inequality (4.51) is continuous and coercive on the product
space V ~ V,, = V,, x A with A = L%(Q), where V corresponds to homogeneous
boundary conditions on I'y,, (the latter are non-zero in the displacement-driven
experiment). The set of constraints is now K, ,—1 =V, x K;,,_1. For the test
elements in V we will drop the index of time level,

u = (u,c), v = (v,2), u,v €V,

but we keep the subscripts where it might cause some confusion, so we desig-
nate:

Auﬂ = (Au’na Ac’n)a (ln,’nfla U) = f’n,ﬂfl(v) - b;rfl(z) + b;ﬁl(z), (452)
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where the linear forms f,, ,—1(v), b} _,(2), b,_,(2) are defined in (4.50), and
I m—1 is an element of the topological dual of V,, i.e., I, ,—1 € V;.
Let us introduce the bilinear form A:V xV — R by

A(u, v) = a(u, v) — g(c, v) — g(z, u) + h(c, 2). (4.53)

wherein the forms a, g, h are defined in (4.49).
With the above notations (4.52) and (4.53) we can rewrite the problem
(4.51) as the variational inequality:

Find Aw, € K, ,—1 such that
A(Auy, v — Auy) > (Ipp-1, v —Auy, ) forall ve Ky p1, (4.54)
wherein

A(Au, v — Au) = a(Au, v — Au) — g(Ac, v — Au) — g(z — Ac, Au) +
h(Ac, z — Ac).

The bilinear form A is characterized by the following two lemmas.

Lemma 4.3. The bilinear form A is continuous on V, that is, there exists a
positive constant k such that

|[A(u, v)| <k ully [lv|ly,  for all u, veV. (4.55)

Proof. The continuity of A follows from the continuity of the bilinear
forms a,g and h, since it is easy to show that there exist positive constants
ki, ko, k4 such that

la(u, v)| < ki lullv |lv]lv,

l9(z, )| < k2 [[2]la [lvllv,

|h(z, w)| < ka||2]|a [[w]]a,
hence

| A(u, v)|

IN

kllullvllollv + kallella llvllv + Ezllzlla llullv + kallella lI2]la

1
< gk (lullv +liella) vl +llzlla) = & ully o]y (4.56)

with & = 2 max{ki, ko, k4} and where inequality a + f < v/2 (a2 + 52)1/2
was used. O
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Lemma 4.4. Let H, = infq(L — B) be strictly positive, H, > 0. The bilinear
form A is coercive on V, that is, there exists a constant kg > 0 such that

A(v, v) > ko ||lv|3  for all v € V. (4.57)

Proof. We have, cf. (3.68),

A(v, v) = ; {(E(w) —2D) - A[E(v) — 2D] + H,2*} d=

z/ﬂkAﬁE(v)-E(v) d:v—i—/

Q

(H,, - kf‘f kﬁD) 2dz,  (4.58)

where k4 is given in (3.6), kp = supq(D - D), and 5 € (0,1). Using Korn’s

inequality (3.66) and choosing 8 = m we arrive at the assertion
(4.55),

Av, v) = ko (Jloliy + 11213 ) = ko 0]
with

H 1
kozmin{ FaHpkx }

H, +2kakp’ 2°F
0

The obtained results are gathered in the following theorem on the existence
and uniqueness of solutions to (4.54), i.e., to the incremental problem (4.51).

Theorem 4.5. Under the assumptions made on the data, there exists a unique
solution of the problem (4.54). The solution depends continuously on data
ln’nfl S V;

Proof. The assertion follows from Theorem 2.2. O

4.2.4 Linear complementarity problems

Let ¢i(z) (1 < i < N) and (z) (1 < j < M) be the finite element bases
we use for the displacement w and phase fraction ¢ in H'(Q) and L?(). In
particular, the field of displacement w can be approximated by a piecewise
quadratic polynomial, whereas for the function of phase fraction ¢ (and p)
a piecewise linear approximation can be utilized. We remark that using of
piecewise linear basis functions 1; leads to the internal approximation of the
sets Ky in (4.48).
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The finite dimensional counterpart of the weak formulation (4.51) may be
expressed as the following linear complementarity problem:

A* Tn+ Y, = bn,nfl
, 1 (4.59)
T, > 0, Yn = 0, Yp = 0, TnY, = 0

in which A* is a square matrix, x, is a vector of unknowns (nodal values of
the finite element approximations), y,, denotes a vector of slack variables, and
the vector by, , 1 is known at time ¢,. By z] we denote the elements of the
vector x,, excluding the subvector :13,11 = Aw, which is sign-unrestricted. The
above matrix and vectors have the following structure

[ K G' -GV 0 0 ]
G —-H H —1 0
A*=| -G H -H o -I|, (4.60)
0 I 0 0
L 0 .
( Auy, ) ( Z,n_l )
Act be'
x, =< Ac, 7, b1 = 4
), 1—-cy
L o ) L Cn-1

Matrices K, G and H are generated by the bilinear forms (4.49),

G = [Gij] = [9(thi, ¢j)],  dimG =M x N,

and I is the M x M identity matrix corresponding to the vectors Ac;’, Ac;,
and their conjugates r%, 0. The latter are Lagrange’s multipliers which are
induced by the constraint imposed on the volume fraction that ¢ € [0, 1], cf.
remark 1. Vectors by, ,,_, bf::l and b¢ ;| are generated by the linear forms
(4.50). Matrices K and H are symmetric and positive definite.
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4.2.5 Numerical examples

To illustrate some of the effects covered by the proposed model we have simu-
lated numerically the basic, uniaxial tensile test on two-phase material strips,
as a plane stress displacement-driven problem. Two examples are considered.
Moreover, in Example 1 two cases were calculated with the same material pa-
rameters and boundary conditions, the difference is only in the proportion of
length a : width b, being 3:1 in Case 1 and 6:1 in Case 2. Example 2 differs
from Example 1 in the following: (i) the middle point of the right-hand side
of the strip, which has the coordinates (z,y) = (a,b/2), is allowed to move
transversely, (ii) the transformation strain tensor D is (slightly) different, (iii)
the proportion of sides is 8:1 and, (iv) the cross-sectional area of the strip in
not constant. Example 2 is motivated by the laboratory experiments of ICHI-
NOSE et al. [61]. Due to lack of a complete set of material data at this time, we
have used the following material parameters corresponding to a CuZnAl single
crystal [59]: Young’s modulus E = 10000.00 MPa, B = 1.20 J/m3, L. = 1.01B,
Poisson’s ratio v = 0.30, and the difference in energies at the stress free state
Aw = wy — wy = 3.756 J/m3.

For the field of displacements wu(+,t) = (u(-,t), v(+,%)), in the coordinate
axes zy, we have used a 6-node triangle finite element with quadratic shape
functions (linear strain triangle), whilst for the volume fraction c¢(-,¢) a 3-
node linear triangle. The three possible layouts of one ”cell” of the mesh are
displayed in Fig. 22.

€Y (b) (©
Yy, vV Yy, vV Y, V

© © & © &

Figure 22: Types of finite element meshes: o = node of the mesh of displace-
ments (u, v), O = node of the mesh of volume fraction ¢

For the solution of the resulting linear complementarity problems we
used the direct algorithm in Example 1, and the iterative two-step algorithm
(SSORP plus PCG) in Example 2, cf. Section 2.3.
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Example 1

The strip and the imposed boundary conditions (4.61) are schematically dis-
played in Fig. 23. We used the uniform mesh of type shown in Fig. 22c with
(6 x 18) x 4 finite elements. The following boundary conditions were taken:

Yy, V

w(t)

a

Figure 23: The strip made of a material with two preferred states, of length a
and width b with a : b= 12 : 4, under uniaxial tension w(t)

u(0,y) =0 0<y<b,

on the left-hand side of the strip
v(0,b/2) =0,

y) =w(t) 0<y<b,
on the right-hand side of the strip { ula,y) = w?) =YY=

v(a,b/2) = 0.
(4.61)
We used the transformation strain tensors D; = 0 and Dy = D with
D - 0.045 0.020
] 0.020 0.045 |’

which corresponds to one variant of a CuAlNi alloy [9].

The loading program w(t) is a bilinear hat function, increasing from zero
to the scaled maximum value at a time ¢ = ¢/, w(t')/a = 0.050833, and then
decreasing to zero. With the same material data we have calculated the strip
for two proportions of its length to width: case 1 with @ : b = 12 mm : 4
mm, and case 2 with @ : b = 24 mm : 4 mm, and the same thickness of 0.4
mm. In its initial state the strip was in the austenite phase, and c(z,ty) =
plx,tg) =0, & € Q =[0,a] x [0,b]. The characteristic major hysteresis loop
is shown in Fig. 24a. Displayed is the relation between the force F' at the
side (x = a,0 < y < b), divided by the initial cross-sectional area Ag of the



106 The two-phase system

strip, versus the scaled elongation w(t)/a. On the graph two pairs (A,A’)
and (B,B’) of states corresponding to the same scaled elongation but with
different histories are marked. Fig. 24b and ¢, and Fig. 26 reveal that the
extension of the two-phase strip induces inhomogeneous fields whose paths of
evolution do not coincide during the loading and unloading stages, even for
this simple uniaxial loading program. Observe also that the initially straight
axis (0 < z < a,y = b/2) of the strip does not remain straight in the zy-plane
in the course of the process, see Fig. 25¢ for the transverse component v of
the displacement vector u. It has turned out rather as quite a surprise that
during the final stage of elongation (not releasing !), at about 4.25 % of
overall strain (point B in Fig. 24) unloading appears, starting from around
the boundaries £ = 0 and z = a and moving to the middle of the strip.

Finally, it is worthwhile to mention that the proposed formulation allows
us to determine the solution of this initially homogeneous problem without
introducing any disturbance to the system in order to initiate the phase trans-
formation.

Example 2

This example is motivated by the laboratory tests of ICHINOSE, FUNATSU &
OTSUKA [61], see Fig. 27. The calculated strip and the imposed boundary
conditions (4.62) are schematically displayed in Fig. 28a. Allowing the right-
hand side of the strip to move transversely, we have applied the following
boundary conditions:

u(0,y) =0 0<y<b,
on the right-hand side of the strip { u(a,y) =w(t) 0<y<b.

on the left-hand side of the strip {

The loading program w(t) is a linear function increasing from zero to the scaled
maximum value of w(tg)/a = 0.05159 corresponding to point E in Fig. 28b.
Further, we assumed that the thickness of the strip changes linearly along the
z-axis with characteristic values of 1.00 mm in the middle (z = 12.00 mm)
and of 0.99 mm at the ends (z = 0.00 and z = 20.00), while being constant
along the y-direction. The variable thickness introduced makes the problem
nonhomogeneous, and is to reflect in some sense the influence of temperature
induced in the course of the austenite-martensite phase transformation, see
the development of the temperature and phase transformation fronts in Fig.
17 and cf. [160]. The transformation strain tensor adopted is now
0.04 0.06
D= [ 0.06 0.04 ] ’



Numerical examples 107

120+ Ao (MPa )

100
80
B
60+
N
a0+

w((t)/a (%)3

Figure 24: Example 1. The 12 x 4 strip under uniaxial extension program
w(t). (a) Major hysteresis loop in the scaled force—elongation space (F//Ag) —
(w(t)/a), (b) and (c) Distribution of volume fraction ¢ at the corresponding
states A and A’
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Figure 25: Example 1, case 1. Distributions of strain €, (a), and the cor-
responding displacement u along the elongation, (b), and transverse displace-
ment v, (c), at the state B in Fig. 24
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Figure 26: Example 1, case 2. The 24 x 4 strip under uniaxial extension
program w(t). (a) and (b) Distribution of volume fraction ¢ at the states
corresponding to A and A’ in Fig. 24



110 The two-phase system
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Figure 27: Example 2. A series of macrographs (a) — (e) taken in the exper-
iments by ICHINOSE, FUNATSU & OTSUKA [61]. The propagation of phase
transformation fronts (black region) induced by elongation of the specimen
can be seen. Observe the resulting transverse movement of the lower grip

The strip was divided into (12 x 100) x 2 finite elements of the mesh type
shown in Fig. 22b, which results in 5025 nodes of displacement field and 1313
nodes of volume fraction, so the number of unknowns of the problem was
12676. The calculations of the deformation process were performed with the
initial mesh of the undeformed strip, while Fig. 28b shows just by means of
the mesh the characteristic deformation stages of the strip. In its initial state
the strip was in the pure austenite phase, and elastically deformed the strip
remains in this state at point A of Fig. 28b. Then the phase transformation
starts at the left and right ends of the strip, leading finally to the state E of
pure martensite in the whole strip. In the intermediate stages of the process
the phase transformation fronts move from the ends to the middle, cf. states
B, C, and D in Figs. 28b and 29. During the process there are moving regions
of the strip in which the material is in the pure austenite phase (¢ = 0) or
martensite phase (¢ = 1), and the transition zone where there is a mixture of
both phases (0 < ¢ < 1). Since the total strain consists of elastic strain and
phase transformation strain, the normal component F,,; is non-zero also in the
middle part of the strip at state C where ¢ = 0, see Fig. 29b (the distribution
of ¢ at state C is similar to that of E,;). Note that even though the average
strain at point D, w/a = 0.04011, is greater than the transformation strain
component Dg, = 0.04, the phase transformation has not taken place in the
whole strip at this level of elongation. The reason is the two-dimensional
stress-strain state of the material.
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Figure 28: Example 2. (a) The strip of length a = 20.00 mm, width b = 2.50
mm, under uniaxial tension w(¢) and imposed boundary conditions. (b) The
diagram of scaled force (F'/Ap) vs. scaled elongation (w(t)/a), and the shape
of the deformed strip at selected states: A = (0.950, 95.479), B = (1.907,
97.370), C = (2.672, 97.557), D = (4.011, 97.885), E = (5.159, 116.454)
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4.3 The multi-well problem

Our aim here is to extend the variational inequality approach of Section 4.2 to
the case of multi-phase mixture. As before, we present a variational inequality
formulation of the phase transformation problem and show that under suitable
hypotheses there exists a unique solution to the problem. Directly relative
aspects have been studied in [75, 10, 39, 114].

4.3.1 Variational inequality formulation

In this section we are concerned with the quasi-static evolution of a shape
memory elastic solid undergoing martensitic phase transformations. We will
build on the concepts presented in the previous section. We admit here the
material to appear in N + 1 preferred strain states: the parent phase (austen-
ite), indexed with ¢ = N +1 = a, and the N-variants of martensite, [9]. Again,
we postulate the Helmholtz free energy W;, i = 1,2,..., N + 1 in the form

Wi(B.6) = 5 (B~ Di)- &(B - D,) + w(0),

with the same elasticity tensor A; = A for each phase (variant). D; € Sym is
the transformation strain (domain) in 4-th phase (with D, = 0). The tensor
D; corresponds to the point of convexity related to the unloaded state, in
the terminology of JAMES [64]. The function w; () is defined in (4.3). Thus,
in a material point & € (), the free energy is a multi-well function which is
piecewise quadratic
W(E)= min {W,(E)}.
1<i<N+1
Denoting by ¢; the volume fraction of i-th phase we will define the quasicon-

vexified (or, relaxed at fixed volume fractions) free energy of the mixture, cf.
[75], as the following expression

~ 1 N+1 1 N+1 N+1
W(E.¢) = 5 (E~D(c)-A[E-D(c)] + ;ciwi—i—i ; j;cichij. (4.63)

where the effective transformation strain D(c¢) is the convex combination,

N+1 N+1
D(c)= > oD;, with ¢; >0, » ¢ =1, (4.64)

that is an element of the convex hull spanned by the set of transformation
strains D;, D(c) € conv{D,Ds,...,Dy;1}. Moreover B;; are material
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constants, being entries of the symmetric matrix B with zero diagonal ele-
ments.

Following the procedure discussed before, we arrive at the reduced form of
the dissipation inequality

o N
oW . S X,
D = —%'C = X'C = — Xm Cm 2 0 (465)

where the driving force for phase transformations, X, is an N-tuple quantity
with components

N
X = DmA[E] - Z (DmA[Dz] + B:u) ¢ — (wm - wa) — Bam.- (4'66)
i=1

In virtue of the mechanically obvious constraint (4.64); we can express the
volume fraction of austenite ¢,, a = N + 1, in terms of ¢,;,, 1 < m < N, which
leads effectively to the N x N matrix of material parameters, B*, with the
components

B:” = Bmi — Bai — Bam-

In the case of multi-phase mixture, for each m-th variant of martensite we
define the phase transformation functions,

Fl =kl — X, >0, F,=Xn—k,>0 for 1<m<N, (4.67)

m

the threshold functions

kb = max{Ly, (cm —pm), 0} >0,
m {Lm ( ), 0} (4.68)
Kp = min{Lmy (¢m —pm), 0} <0,

and split the rate of volume fraction ¢, into the positive and the negative part
éh = max {én, 0} > 0, ¢, = max {—¢p, 0} > 0. (4.69)

Now, instead of one material constant L in the case of two-phase systems, we
have an N-tuple of the material constants L,, > 0, which have a meaning of
the energy dissipated during the forward and reverse transformation of the
unit volume of m-th variant of martensite. By p, we denote the memory
variable corresponding to the m-th variant of martensite, which in particular
may take only two values: 0 and 1.

Accounting for the dissipation inequality (4.65) we stipulate the following
phase transformation criteria (PTC) for the multi-phase mixture, requiring
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for each component X,;, (1 <m < N) of the driving force that

if X (e) = k1 (em) then ¢, >0

if Xm(e) =k, (cm) then ¢, <0 (4.70)

if K, (cm) < Xm(e) <kt (cpn) then ¢, =0

which can be expressed as the following system of variational inequalities,

N N
em>0, Y en<l, D Fi(e) (yh—¢éh) >0 forallyh >0. (4.71)
m=1 m=1
Thus, according to the PTC (4.70) among all variants of martensite those
are activated whose driving forces are equal to their thresholds. Moreover,
at subsequent stages of the PT process various phases can be simultaneously
induced or 'consumed’. The stresses play here the decisive role, introducing
the ’order’ into the mixture of phases. Note that the expression (4.66), cf.
also (4.37), accounts for the observation of PATEL & COHEN cited on page 14,
incorporating in a natural way the direction properties both of the stress tensor
T and the phase transformation tensors D,,,.
For completeness we recall the equilibrium equations,

divA[E(u) — D(c)]+ f = 0. (4.72)
Weak formulation
As before, we consider finite increments
Aup = up — Up—1
Ac, =c¢p —Cpo1
and decompose the vector function Ae, into its positive and negative part,
Ae, = Ac) — Ac,,.

The conditions (4.71); o dictate the following constraint sets on the increments
of volume fraction, Ae,, Ac;', and Ac,,,

K(z) = {w e L2QRY) | jwi| €1,0< N (i +wi) <1, 2 € z}
Ki(z) = {w e L2(QRV) | wi >0, 2N (5 +w;) <1,z € z}
K (z) = {weLl>(QRY)| w; >0,z —w>0,2z€Z}

7 = {z eL2(Q,RV) | >0, N 2 < 1}.
(4.73)
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Now we are in a position to formulate a typical time-step of the incremen-
tal boundary value problem defined by (4.72) and (4.71) as the variational
inequality.

Find (Auy,, Acy) € V(t,) X K(cp—1) such that
a(Aup,v) — g(Acp,v) = fon-1(v)

Fg(z4 — Acﬁ, Auy,) + h(Acp, 24 — Acf) > $bf71(zi — Acf)

for all v € V(ty,), z1+ € Ki(cp—1).

(@.74)
The forms a and fy,, 1 are as before in (4.49); and (4.50);, while the
others

N

glw,v) = le/meA[Dm]-Vv dz (4.75)
N N

h(wav) = Z Z/(DMA[DZ] + B:u + 5miLm)wmvi dz (476)
m=1i=1 "%

N
bffl(w) = Z /Q[Bam + (wm - wa) + Lm(cm,nfl _pm,nfl)i]wm dx
m=1
Fo(w,u, 1) £ h(e, 1, w). (4.77)

4.3.2 Existence and uniqueness

In this section we follow the line of reasoning presented in Sections 3.1.3 and
4.2. We shall show that a bilinear form A corresponding to the variational
inequality (4.74) is continuous and coercive on the product space V ~ V, =
Vi, x A with A = L2(, R"), under some assumptions to be presented here.
The norm on V is assigned in (3.49). Again, let K, ,—1 = V;, X K,y with
K, 1 of (4.73) stand for the convex set of constraints, I, ,—1 C V,. The
elements u, v € V represent here the pairs

u = (u,c), v = (v, 2).
Further, for simplicity in notation we set:

Aun = (Aunacn)a <ln,n71a U) = fﬂ,nfl(v) - b;rfl(z) + bgfl(z)‘ (478)
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As previously, the bilinear form A : V x V — R is defined by
A(u, v) = a(u, v) — g(e, v) — g(2z, u) + h(e, 2). (4.79)
Now, the problem (4.74) can be rewritten as the variational inequality:
Find Aw, € K, ,—1 such that
A(Aup,v — Aup) > (lyp—1, v — Au, ) forall v e Ky . (4.80)

The critical role in the question of uniqueness will be played by the sym-
metric matrix B” whose elements depend upon the material properties Bi*j
and L;,

Bfy =B} +6;jLi, 1<i,j<N. (4.81)

We assume that B” is positive definite, i.e. there exists a constant H, >0
such that
y-Bly > H,|y|? forally e RY. (4.82)

Furthermore, it is natural to assume that the transformation strain of each
martensitic variant are bounded,

.

Hence for the average phase transformation strain tensor D(z) we have the
estimation,
D(z)-D(2) <kp|z|*> kp<oo. (4.84)

The required properties of the bilinear form A are formulated as the fol-
lowing lemmas.

Lemma 4.6. The bilinear form A is continuous on V, that is, there exists a
positive constant k such that

|[A(u, v)| <k ully [lv|ly,  for all u, veV. (4.85)
Proof. The proof goes along the lines of the proof of Theorem 4.3. U

Lemma 4.7. Let B be positive definite. The bilinear form A is coercive on
V, i.e., there exists a constant kg > 0 such that

A(v, v) > ko ||lv|3  for all v € V. (4.86)
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Proof. Let § = H,/(H, + 2kakp). We have,

Aw,v) = | {[E(w) — D(2)]-A[E(v) — D(2)] + 2-B"2} dz

> / {kalB(v) - D(2)}[B(v) - D(2)] + 2-B"2} da
Q

> [ {kAmE(v)F— 2 |D(z)|2+Hp|z|2} dat

15
fy

V1= BE(v) - ———D(2)
z/ﬂkAﬁ|E(v)|2 dx+/Q <Hp— kABkD) 122 dz

2
dz

vI-5

1-p
> ko (Iolly + 12113 ) = ko llol . (4.87)
; . kaH kK 1
with ko = A prR  — g U
0 mln{Hp+2kAkD’2 p}

The following theorem on existence and uniqueness holds.

Theorem 4.8. Let the elasticity tensor A € LinLin satisfy conditions (3.6),
matriz BY be positive definite, and transformation strain tensors D, satisfy
condition (4.84). There exists a unique solution of the problem (4.80). The
solution depends continuously on data l, ,—1 € V.

Proof. The proof follows from Theorem 2.2. O

4.4 Concluding remarks

Summing up this chapter we stress the following. The proposed variational
inequlity approach to the PT process seems to be the advantagous tool both
in the qualitative analysis on existence and uniqueness of its solutions, as well
as in the numerical treatment of the problem. The obtained results in Sec-
tions 4.1 and 4.2 demonstrate the extraordinary response of the PT systems.
In particular, the numerical results of Example 2 in Section 4.2 confirm the
dominant shear character of the martensitic PT, and are in good qualitative
agreement with the experimental findings of ICHINOSE et al. [61]. On the
other hand, Examples 1 and 2 there show how different may be the defor-
mation mode of the strip if boundary conditions are changed and/or some
inhomogeneity is present, the occurence to be expected from the analysis in
Section 4.1. Some additional, general remarks are given in the next section.
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5.1 Final conclusions

Even nowadays when the experimental facilities allow for the investigation of
microstructures and the computational power of computers is quite impressive,
we are still unable to calculate an engineering construction by treating it as a
conglomerate of atoms (if this would make any practical sense in any case). Of
course, to get an understanding of the mechanism of deformation processes and
to tailor the special properties and microstructure of the material, laboratory
tests and crystallographic calculations related to some fine scale are necessary.
On the other hand, in order to be capable of handling the IBVP encountered in
engineering practice we finally need possibly simple models which should, how-
ever, properly reflect the characteristic features of material behaviour. These
are usually averaged continuum models which describe the material behaviour
on the higher (meso or macro) scale. The averaging procedures corresponding
to the relaxation or homogenization of the microscale relations have become
recently the subject of intensive mathematical research in which the refined
notion of generalized curves of YOUNG [194] and various subtle concepts of
convergence, e.g. H-convergence and ['-convergence, are used. In the field of
continuum mechanics, the phenomenological models of deformation processes
have been devised in which the microstructural rearrangements are taken into
account by means of a set of internal variables with their evolution laws. We
emphasize here the interplay between mathematics and mechanics. While
mathematics can substantiate the existing averaged models of mechanics and
put them in a wide panorama of mathematical concepts, mechanics suggests
the physical interpretation of the averaging quantities of interest (e.g. our vol-
ume fractions ¢) and in addition to that, and what is of critical importance,
mechanics supplies the evolution laws for internal variables upon the basis of
physical arguments. In this connection we recall that the models of plastic
flow (with additional effects of viscosity and slackening) in Chapter 3 have a
macroscopic character. Also, the starting point of the suggested model for
martensitic PT, cf. (4.74), is the expression for the homogenized, macroscopic
free energy of a multi-phase mixture (4.63), which in this work is treated as
granted. The detailed, strictly mathematical homogenization of the micro-
scopic relations for the mechanical problems examined in this account would
lead us aside of our present aims, as it is in fact a difficult delicate problem in
itself.

The analysis presented in the present work borrows a lot from the results
obtained by other researches, but in some respects it is different from the pre-
ceding models. First of all, we have tried to develop a fairly complete approach
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which resolves the interrelated tasks listed in Section 1.3: from a physical
phenomenon through mathematical analysis to verification of model’s predic-
tion against laboratory tests. On the mathematical side, the main novelty
of this approach consists of the unifying variational inequality formulation of
the yield, phase transformation, and slackening criteria which allows for the
global projection in the numerical solution of the associated IBVP. The VI
formulation constitutes the necessary optimality conditions for the deforma-
tion process, which become sufficient for the existence of unique solutions if
certain requirements of positive energy dissipation are accounted for. The
latter is measured in (4.70) by threshold functions x;.. Moreover, the for-
mulation directly leads to the computational algorithms of general character
(LCP, SSORP, PCG). On the mechanical side, the proposed models of plastic
flow and martensitic PT have proved to be capable of capturing the complex
material behaviours considered.

Summing up the discussions in the previous chapters we wish to highlight
the following:

e We have shown that the loading/unloading conditions of plastic flow,
the criteria of martensitic PT and the slackening (locking) conditions
are equivalent to a variational inequality. In particular, it turns out
that the loading/unloading criteria assure the consistency condition, cf.
Proposition 3.1.

e For the material models considered we have established the conditions of
existence of unique solutions to the corresponding incremental boundary
value problem.

e We developed numerous computer codes which solve the finite dimen-
sional counterpart of the proposed VI formulations, resulting from the
finite element approximation. For solving the resulting LCP two meth-
ods are devised: a direct procedure and an iterative algorithm. Various
numerical experiments were carried out, the results of which were com-
pared with available experimental observations.

e The variational inequality formulation of the model problem of plastic
flow, Section 3.1, can be extended strightforwardly to the non-smooth
multi-surface plasticity or the gradient dependent plasticity [120]. On
non-convex yield surfaces the reader may consult [89] where further ref-
erences are given and DVORAK et al. [28].

e A new model for the slackened-viscoelastic-plastic response is advanced.
The obtained numerical results with this model reveal that the history
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of the deformation process has the critical impact on the present state
of structural systems.

e The homogenized energy of the phase-mixture and the conditions im-
posed by the second principle of thermodynamics lead to the mathemat-
ically well-posed, stable models of martensitic PT which describe the
material behaviour at a macroscopic level.

e The phase transformation criteria (4.70) define implicitly the evolution
law of volume fractions ¢, thereby the kinetics of the PT process.

e As a major finding of the 1D simulations we have obtained that the lo-
cal material behaviour (stress vs. strain) is different from that observed
at the level of global quantities (force vs. displacement). The strain-
temperature coupling makes the martensisitic PT deformation process
rate-dependent. Also, the numerical results obtained for the tension
test on austenite-martensite strips show that two corresponding states
on the force-elongation diagram are connected with different inhomo-
geneous states in the bulk of the sample. The influence of the phase
transformation strain and boundary conditions on the propagation of
transformation fronts and the deformation mode of the specimen is ob-
served. The results of numerical simulation of PT on a two-component
strip are in good agreement with the experimental findings [61], cf. Figs.
27 and 28.

e The proposed VI formulation of the PT process, seems to be, inter alia,
a very promising approach in dealing with similar hysteretic boundary
value problems.

5.2 Directions for further work

The problems treated in this work are difficult in many aspects and we are
still far from their complete solution, but we believe that the present work
is the good basis for further work in many, different directions. Among the
many points which deserve further attention we will mention the following.

e We assumed the same elasticity properties for all phases (variants), but
it seems possible to extend the VI formulation to the case of different
phase moduli by making A dependent upon the volume fractions, i.e.
A = A(c) (effective elasticity tensor), cf. HASHIN & SHTRIKMAN [53],
MILTON [115] and others.
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e The interaction of the effects of phase transformation, plasticity and
temperature is important. Yet, it may not be trivial to ”seperate” these
phenomena, both in the laboratory tests and mathematical modelling.

e The extension of the presented formulations to the range of large strains
is desirable, although there are still some controversial aspects both in
plasticity theory and in martensitic PT, e.g. cf. [162, 103, 7, 9, 39].

e We believe that the proposed unifying formulations for plastic flow and
martensitic phase transformations will be a useful starting point in the
sensitivity analysis of shape optimization and optimal control problems,
as discussed among others by SZEFER [178], SOKOLOWSKI & ZOLESIO
[165], and HASLINGER & NEITTAANMAKI [54]. Of great practical inter-
est is here the optimal design of skeletal structures by optimization of
positions of structural joints, e.g. cf. GARSTECKI [40]. It will be useful
to extend the model of Section 3.2 to such an optimization problem, ad-
ditionally accounting for the constraints on the generalized stresses (via
the yield condition) and generalized strains (e.g. rotation at a joint).
Optimal location of actuators for active control of flexible structures is
a related domain where our approach could be utilized.

e Both the problems of plasticity and of martensitic PT are free boundary
problems which describe localization processes (of strains, temperature),
so the application of adaptive mesh strategies and parallel computing will
be profitable.

We hope that in the future we shall have the opportunity to attack some
of the issues listed above.
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semi-coupled strain-temperature steps, thick line: fully coupled
strain-temperature steps . . . . . .. ..o
Scaled force F'//Aq vs. scaled elongation ¢/, obtained with the
fully coupled strain-temperature scheme, for various elongation
rates. Thin line isothermal case, medium line — 0.667 %/s,
thick line — 6.67 %/s . . . . .. ...
Selected states A,B,...,A’ on the force-elongation diagram,
(a). Distribution of phase fraction, (b), and temperature, (c),
along the bar at the selected states. (The fully coupled strain-
temperature scheme) . . . ... ...
Illustration of a discontinuous response of the thermomechani-
calmodel . . . . . ...
The different reloading responses from the state C: (i) in direc-
tion C-B by Miiller, (ii) in direction C-E by Raniecki . . . . . .
Example 2 of Sec. ?? recalculated with the evolution law (?7?)
for the memory variable p, to be compared with the scaled force-
elongation (F'/Ag) — (¢(t)/lp) shown in Fig. ??b, for various
(scaled) inhomogeneity parameter: p/pg = 1 (thin line), p/pg =
1/500 (medium line), p/po = 1/2000 (thick line). . . . . . . ..
Quasiconvexified energy function QW for a two-phase system
with parabolic energies Wi and Wy, and transformation strains
D{ = 0,D3 = D. The dotted bold line corresponds to the
convexification of W . . . . . . ..o
Types of finite element meshes: o = node of the mesh of dis-
placements (u, v), ) = node of the mesh of volume fraction
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Final conclusions

23

24

25

26

27

28

29

The strip made of a material with two preferred states, of length
a and width b with a : b = 12 : 4, under uniaxial tension w(t)
Example 1. The 12 x 4 strip under uniaxial extension program
w(t). (a) Major hysteresis loop in the scaled force—elongation
space (F/Ao) — (w(t)/a), (b) and (c) Distribution of volume
fraction ¢ at the corresponding states A and A’ . . . . .. ...
Example 1, case 1. Distributions of strain €;,, (a), and the
corresponding displacement u along the elongation, (b), and
transverse displacement v, (c), at the state B in Fig. 7?7
Example 1, case 2. The 24 x 4 strip under uniaxial extension
program w(t). (a) and (b) Distribution of volume fraction ¢ at
the states corresponding to A and A’ in Fig. 27 . . . .. ...
Example 2. A series of macrographs (a) — (e) taken in the ex-
periments by ICHINOSE, FUNATSU & OTSUKA [61]. The propa-
gation of phase transformation fronts (black region) induced by
elongation of the specimen can be seen. Observe the resulting
transverse movement of the lower grip . . . . .. ... .. ...
Example 2. (a) The strip of length a = 20.00 mm, width b =
2.50 mm, under uniaxial tension w(¢) and imposed boundary
conditions. (b) The diagram of scaled force (F'/Ay) vs. scaled
elongation (w(t)/a), and the shape of the deformed strip at
selected states: A = (0.950, 95.479), B = (1.907, 97.370), C =
(2.672, 97.557), D = (4.011, 97.885), E = (5.159, 116.454) . . .
The distribution of volume fraction ¢ at state B, (a), and state
D, (c¢), and that of strain FE,, at state C, (b), of Fig. ??b
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Mieczyslaw Sylwester Kuczma

ZASTOSOWANIE NIEROWNOSCI WARIACYJNYCH
W MECHANICE PLASTYCZNEGO PLYNIECIA

I MARTENZYTYCZNYCH PRZEMIAN FAZOWYCH

Streszczenie

Praca dotyczy matematycznego modelowania i numerycznego rozwiazywania
zagadnien nieréwnodciowym dla dwdch klas zachowania sie materialéw: plas-
tycznego plyniecia i wywolanych naprezeniem termosprezystych marten-
zytycznych przemian fazowych. Odpowiadajace zagadnienia poczatkowo-
brzegowe dla tych deformacyjnych proceséw z histereza sformulowano w jed-
nolitej postaci ewolucyjnej nieréwnosci wariacyjnej, ktéra obejmuje warunki
réwnowagi statycznej i kryteria obciazenia/odciazenia i poluzowania, lub
kryteria zachodzenia przemian fazowych. Przy przyjeciu odpowiednich
hipotez, udowodniono istnienie i jednoznaczno$¢ rozwiazan dla tych global-
nych sformulowan. Zaproponowano dwa algorytmy numeryczne i opracow-
ano kilka programéw komputerowych. Algorytmy te okazaly sie efektywne w
rozwiazywaniu zlozonych, konkretnych zadan brzegowych. Otrzymane rezul-
taty symulacji numerycznej dla zaproponowanych modeli materialu ukazuja
interesujace wlasnosci lepkosprezysto-plastycznych ukladéw konstrukcyjnych,
a dla proceséw przemian fazowych sa niezwykle, jednak zgodne z wynikami
obserwacji laboratoryjnych.

Slowa kluczowe: nieréwnosci wariacyjne, liniowe zadania komplementarne
(LZK), metoda elementéw skoriczonych, algorytmy numeryczne bezposredni
i iteracyjny (SSORP plus PCG) do LZK, lepkosprezystoplastycznosé, polu-
zowanie, martenzytyczne przemiany fazowe, stopy z pamiecia ksztaltu.
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